精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的单调函数f(x)满足f(2),且对任意xyR,都有f(xy)f(x)f(y)

(1)求证:f(x)为奇函数;

(2)f(k·3x)f(3x9x2)<0对任意xR恒成立,求实数k的取值范围.

【答案】(1)见解析;(2).

【解析】试题分析:1)首先令代入到恒等式可求出,再令得到,即命题成立;(2)根据题意得到函数为增函数,将单调性与奇偶性相结合原不等式等价于,令,将问题转化为含有参数的一元二次不等式问题,利用分类讨论得结果.

试题解析:(1)证明: ()①,令,代入①式,得,即,代入①式,得,又则有对任意恒成立,所以是奇函数.

(2) ,即上是单调函数,所以上是增函数.

又由(1)是奇函数, 所以对任意恒成立,令,问题等价于对任意恒成立,令,其对称轴.

,即时, ,符合题意;当时,对任意 恒成立解得,综上所述,当时, 对任意恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立.

1)求该网民至少购买4种商品的概率;

2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】pf(x)在区间(1,+∞)上是减函数;q:若x1x2是方程x2ax20的两个实根,则不等式m25m3≥|x1x2|对任意实数a[1,1]恒成立.若p不正确,q正确,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的方程为,定点,点是曲线上的动点, 的中点.

(1)求点的轨迹的直角坐标方程;

(2)已知直线轴的交点为,与曲线的交点为,若的中点为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)若,求曲线在点处的切线方程;

2)若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,二面角的大小为90°

1)求证:

2)试确定的值,使得直线与平面所成的角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L,记作和氢氧根离子的物质的量的浓度(单位mol/L,记作的乘积等于常数.已知pH值的定义为,健康人体血液的pH值保持在7.357.45之间,那么健康人体血液中的可以为(参考数据:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设动点到定点的距离比它到轴的距离大,记点的轨迹为曲线.

(1)求点的轨迹方程;

(2)若圆心在曲线上的动圆过点,试证明圆轴必相交,且截轴所得的弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)sin2axsin ax·cos ax (a>0)的图象与直线yb相切,并且切点的横坐标依次成公差为的等差数列.

(1)ab的值;

(2)x0,且x0yf(x)的零点,试写出函数yf(x)上的单调增区间.

查看答案和解析>>

同步练习册答案