精英家教网 > 高中数学 > 题目详情
19.下列条件:(1)ab>0,(2)ab<0,(3)a>0,b>0,(4)a<0,b<0,其中能使$\frac{b}{a}+\frac{a}{b}≥2$成立的条件的个数是3.

分析 当a,b同号时,$\frac{b}{a}>0,\frac{a}{b}>0$,$\frac{b}{a}+\frac{a}{b}≥2$,进而得到答案.

解答 解:当a,b同号时,$\frac{b}{a}>0,\frac{a}{b}>0$,$\frac{b}{a}+\frac{a}{b}≥2$,
故:(1)ab>0,(3)a>0,b>0,(4)a<0,b<0,能使$\frac{b}{a}+\frac{a}{b}≥2$成立,
故答案为:3

点评 本题以命题的真假判断与应用为载体,考查了基本不等式,难度基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.抛物线y2=2px(p>0)的一条弦AB过焦点F,且|AF|=2,|BF|=3,则抛物线的方程为y2=$\frac{24}{5}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设全集U=R,集合A={x|x2-1<0},B={x|x(x-3)>0}则A∩(∁UB)=(  )
A.{x|0<x<2}B.{x|0<x<1}C.{x|0≤x<1}D.{x|-1<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.
(I)求证:平面ABE⊥平面B1BCC1
(II)求证:C1F∥平面ABE
(III)求直线CE和平面ABE所成角的正弦.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=cos(2x-\frac{4π}{3})+2{cos^2}x$.
(1)求函数f(x)的最大值;
(2)已知△ABC中,角A,B,C为其内角,若$f(B+C)=\frac{3}{2}$,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个向量,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,若在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,D为BC中点,则AD的长为(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={x|k+1≤x≤2k},B={x|1≤x≤3},则能使A∩B=A成立的实数k的取值范围是$({-∞,\frac{3}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四边形ABCD中,∠A=90°,AB=AD=2,CB=CD=3,将△ABD沿BD折起,得到三棱锥A'-BDC,O为BD的中点,M为OC的中点,点N在线段A'B上,满足$A'N=\frac{1}{4}A'B$.

(Ⅰ)证明:MN∥平面A'CD;
(Ⅱ)若A'C=3,求点B到平面A'CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线C的参数方程为$\left\{{\begin{array}{l}{x=4cosα}\\{y=sinα}\end{array}}\right.$(α为参数),M是曲线C上的动点,若曲线T极坐标方程2ρsinθ+ρcosθ=20,则点M到T的距离的最大值(  )
A.$\sqrt{13}+4\sqrt{5}$B.$2+4\sqrt{5}$C.$4+4\sqrt{5}$D.$6\sqrt{5}$

查看答案和解析>>

同步练习册答案