精英家教网 > 高中数学 > 题目详情
4.在边长为2的正△ABC,已知$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BE}$=$\frac{4}{5}$$\overrightarrow{BC}$,则 $\overrightarrow{AE}$•$\overrightarrow{BD}$=0.

分析 由已知得$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BE}$=$\overrightarrow{AB}$+$\frac{4}{5}$$\overrightarrow{BC}$,$\overrightarrow{BD}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$=-$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$,由此能求出答案.

解答 解:∵等边三角形ABC的边长为2,$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BE}$=$\frac{4}{5}$$\overrightarrow{BC}$,
∴$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BE}$=$\overrightarrow{AB}$+$\frac{4}{5}$$\overrightarrow{BC}$,
$\overrightarrow{BD}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$=-$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$,
∴$\overrightarrow{AE}$•$\overrightarrow{BD}$=($\overrightarrow{AB}$+$\frac{4}{5}$$\overrightarrow{BC}$)(-$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$)=-|$\overrightarrow{AB}$|2+$\frac{2}{3}$$\overrightarrow{AB}$•$\overrightarrow{AC}$-$\frac{4}{5}$$\overrightarrow{BC}$•$\overrightarrow{AB}$+$\frac{8}{15}$$\overrightarrow{BC}$•$\overrightarrow{AC}$
=-|$\overrightarrow{AB}$|2+$\frac{2}{3}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos60°-$\frac{4}{5}$|$\overrightarrow{BC}$|•|$\overrightarrow{AB}$|cos120°+$\frac{8}{15}$|$\overrightarrow{BC}$|•|$\overrightarrow{AC}$|cos60°
=-4+$\frac{2}{3}$×2×2×$\frac{1}{2}$+$\frac{4}{5}$×2×2×$\frac{1}{2}$+$\frac{8}{15}$×2×2×$\frac{1}{2}$
=-4+4
=0,
故答案为:0.

点评 本题考查向量数量积的求法,解题时要认真审题,注意平面向量加法法和向量数量积公式的合理运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.一个棱柱的直观图和三视图(主视图和俯视图是边长为a的正方形,左视图是直角边长为a的等腰三角形)如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.
(1)求证:GN⊥AC;
(2)试确定G点位置使得AG∥平面FMC;
(3)求三棱锥G-MCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5月的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如表资料:
日期3月1日3月2日3月3日3月4日3月5日
昼夜温差(.C)101113128
发芽数(颗)2325302616
(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25”的概率
(2)请根据3月2日至3月4日的三组数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(3)若由线性回归方程得到的估计数据与所需要检验的数据误差均不超过2颗,则认为得到的线性回归方程是可靠的,试用3月1日与3月5日的两组数据检验,问(2)中所得的线性回归方程是否可靠?
(参考公式:$\widehatb=\frac{{\sum_{i=1}^{i=n}{({{x_i}-\overline x})•({{y_i}-\overline y})}}}{{\sum_{i=1}^{i=n}{{{({{x_i}-\overline x})}^2}}}}$或$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设全集U=R,已知集合A={-2,-1,0,1,2,3},B={x|$\frac{3}{x-1}$+1≥0},则集合A∩∁UB=(  )
A.{-1,0,1}B.{-1,0}C.{-2,-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥S-ABCD中,侧棱SA⊥底面ABCD,且底面ABCD是边长为1的正方形,侧棱SA=4,AC与BD相交于点O.
(1)证明:SO⊥BD;
(2)求三棱锥O-SCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
x258911
y1210887
(Ⅰ)求y关于x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额
附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若cos(${\frac{π}{6}$-α)=$\frac{1}{3}$,则cos($\frac{2π}{3}$+2α)=(  )
A.$\frac{2}{9}$B.$-\frac{2}{9}$C.$\frac{7}{9}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.春夏季节是流感多发期,某地医院近30天每天入院治疗的人数依次构成数列{an},已知a1=1,a2=2,且满足an+2-an=1+(-1)n(n∈N*),则该医院30天入院治疗流感的人数共有255人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(2cos(x-$\frac{π}{6}$),-1),$\overrightarrow{b}$=(sin(x+$\frac{π}{6}$),$\frac{\sqrt{3}}{2}$)
(1)求f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的单调递增区间;
(2)设函数g(x)=f(x)+$\sqrt{3}$cos2x,且g($\frac{α}{2}$)=$\frac{2}{3}$,0<α<π,求g($\frac{π}{4}$+$\frac{α}{2}$)的值.

查看答案和解析>>

同步练习册答案