精英家教网 > 高中数学 > 题目详情
19.如图,在四棱锥S-ABCD中,侧棱SA⊥底面ABCD,且底面ABCD是边长为1的正方形,侧棱SA=4,AC与BD相交于点O.
(1)证明:SO⊥BD;
(2)求三棱锥O-SCD的体积.

分析 (1)由SA⊥平面ABCD可得SA⊥BD,又AC⊥BD,故BD⊥平面SAC,于是BD⊥SO;
(2)VO-SCD=VS-OCD=$\frac{1}{3}{S}_{△OCD}•SA$.

解答 证明:(1)∵SA⊥平面ABCD,BD?平面ABCD,
∴SA⊥BD,
∵四边形ABCD是正方形,
∴BD⊥AC,
又SA?平面SAC,AC?平面SAC,SA∩AC=A,
∴BD⊥平面SAC,∵SO?平面SAC,
∴SO⊥BD.
(2)∵四边形ABCD是边长为1的正方形,
∴S△OCD=$\frac{1}{4}$S正方形ABCD=$\frac{1}{4}×{1}^{2}$=$\frac{1}{4}$.
∴VO-SCD=VS-OCD=$\frac{1}{3}{S}_{△OCD}•SA$=$\frac{1}{3}×\frac{1}{4}×4$=$\frac{1}{3}$.

点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知四棱柱ABCD-A1B1C1D1,底面ABCD为菱形,∠ADC=60°,BB1⊥底面ABCD,AA1=AC=4,E是CD的中点,
(1)求证:B1C∥平面AC1E;
(2)求几何体C1-AECB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在直角梯形PBCD中,PB∥DC,DC⊥BC,PB=BC=2CD=2,点A是PB的中点,现沿AD将平面PAD折起,设∠PAB=θ:
(1)当θ为直角时,求异面直线PC与BD所成角的大小:
(2)当θ为多少度时,三棱锥P-ABD的体积为$\frac{\sqrt{2}}{6}$:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用硬纸依据如图所示(单位;cm)的平面图形制作一个几何体,画出该几何体的三视图并求出其表面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.由曲线y=$\sqrt{x}$,y=x-2及x轴所围成的封闭图形的面积是(  )
A.4B.$\frac{10}{3}$C.$\frac{16}{3}$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在边长为2的正△ABC,已知$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BE}$=$\frac{4}{5}$$\overrightarrow{BC}$,则 $\overrightarrow{AE}$•$\overrightarrow{BD}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,△ABC是边长为2的正三角形,D是AC的中点.
(Ⅰ)求证;B1C∥平面A1BD;
(Ⅱ)若直线AB1与平面A1BD所成的角的正弦值为$\frac{\sqrt{21}}{7}$,求此三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果a<b<0,那么下面一定成立的是(  )
A.ac<bcB.a-b>0C.a2>b2D.$\frac{1}{a}$<$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{13}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°.

查看答案和解析>>

同步练习册答案