分析 (1)由SA⊥平面ABCD可得SA⊥BD,又AC⊥BD,故BD⊥平面SAC,于是BD⊥SO;
(2)VO-SCD=VS-OCD=$\frac{1}{3}{S}_{△OCD}•SA$.
解答 证明:(1)∵SA⊥平面ABCD,BD?平面ABCD,
∴SA⊥BD,
∵四边形ABCD是正方形,
∴BD⊥AC,
又SA?平面SAC,AC?平面SAC,SA∩AC=A,
∴BD⊥平面SAC,∵SO?平面SAC,
∴SO⊥BD.
(2)∵四边形ABCD是边长为1的正方形,
∴S△OCD=$\frac{1}{4}$S正方形ABCD=$\frac{1}{4}×{1}^{2}$=$\frac{1}{4}$.
∴VO-SCD=VS-OCD=$\frac{1}{3}{S}_{△OCD}•SA$=$\frac{1}{3}×\frac{1}{4}×4$=$\frac{1}{3}$.
点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{10}{3}$ | C. | $\frac{16}{3}$ | D. | $\frac{15}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ac<bc | B. | a-b>0 | C. | a2>b2 | D. | $\frac{1}{a}$<$\frac{1}{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com