精英家教网 > 高中数学 > 题目详情
10.如图,在直角梯形PBCD中,PB∥DC,DC⊥BC,PB=BC=2CD=2,点A是PB的中点,现沿AD将平面PAD折起,设∠PAB=θ:
(1)当θ为直角时,求异面直线PC与BD所成角的大小:
(2)当θ为多少度时,三棱锥P-ABD的体积为$\frac{\sqrt{2}}{6}$:

分析 (1)取PA的中点E,连结OE,BE,则∠BOP为PC,BD所成的角,由PA⊥AB,PA⊥AD可得PA⊥平面ABCD,利用勾股定理求出△OBE的三边长,使用余弦定理求出cos∠BOP;
(2)P到平面ABCD的距离为PAsinθ=sinθ,代入棱锥P-ABD的体积公式求出sinθ得出θ的值.

解答 解:(1)∵AB∥CD,AB=CD,CD⊥BC,
∴四边形ABCD是矩形,
连结AC交BD与O,则O是AC,BD的中点,
取PA的中点E,连结OE,BE,
则OE是△PAC的中位线,∴PC∥OE,OE=$\frac{1}{2}$PC.
∴∠BOE是异面直线PC,BD所成的角
∵PA⊥AB,PA⊥AD,AB∩AD=A,
∴PA⊥平面ABCD,
∴BE=$\sqrt{A{B}^{2}+A{E}^{2}}=\frac{\sqrt{5}}{2}$,OB=OA=$\frac{1}{2}$BD=$\frac{1}{2}$$\sqrt{A{B}^{2}+A{D}^{2}}=\frac{\sqrt{5}}{2}$.OE=$\sqrt{A{E}^{2}+O{A}^{2}}$=$\frac{\sqrt{6}}{2}$.
∴cos∠BOE=$\frac{O{B}^{2}+O{E}^{2}-B{E}^{2}}{2OB•OE}$=$\frac{\frac{5}{4}+\frac{6}{4}-\frac{5}{4}}{2×\frac{\sqrt{5}}{2}×\frac{\sqrt{6}}{2}}$=$\frac{\sqrt{30}}{10}$.
∴∠BOE=arccos$\frac{\sqrt{30}}{10}$.即异面直线PC与BD所成的角为arccos$\frac{\sqrt{30}}{10}$.
(2)P到平面ABCD的距离h=PAsinθ=sinθ.
S△ABD=$\frac{1}{2}AB×AD$=1,
∴VP-ABD=$\frac{1}{3}{S}_{△ABD}•h$=$\frac{1}{3}×1×sinθ$=$\frac{\sqrt{2}}{6}$.
∴sinθ=$\frac{\sqrt{2}}{2}$.
∴θ=$\frac{π}{4}$或$\frac{3π}{4}$.

点评 本题考查了异面直线所成角的计算,棱锥的体积计算,作出空间角是解题关键,也可使用向量法求出,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知F是双曲线C:x2-y2=1的右焦点,P是C的左支上一点,点A(0,$\sqrt{2}$),则△APF周长的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,四边形ABCD为直角梯形,AB∥CD,AB⊥BC,△ABE为等边三角形,且平面ABCD⊥平面ABE,CD=BC=$\frac{1}{2}$AB=1,点P为CE中点.
(Ⅰ)求证:AB⊥DE;
(Ⅱ)求DE与平面ABCD所成角的大小;
(Ⅲ)求三棱锥D-ABP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用分析法证明:设a,b为实数,求证$\sqrt{{a}^{2}+{b}^{2}}$≥$\frac{\sqrt{2}}{2}$(a+b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,将平面直角坐标系中的纵轴绕原点O顺时针旋转30°后,构成一个斜坐标平面xOy.在此斜坐标平面xOy中,点P(x,y)的坐标定义如下:过点P作两坐标轴的平行线,分别交两轴于M,N两点,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.那么以原点O为圆心的单位圆在此斜坐标系下的方程为x2+y2+xy-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5月的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如表资料:
日期3月1日3月2日3月3日3月4日3月5日
昼夜温差(.C)101113128
发芽数(颗)2325302616
(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25”的概率
(2)请根据3月2日至3月4日的三组数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(3)若由线性回归方程得到的估计数据与所需要检验的数据误差均不超过2颗,则认为得到的线性回归方程是可靠的,试用3月1日与3月5日的两组数据检验,问(2)中所得的线性回归方程是否可靠?
(参考公式:$\widehatb=\frac{{\sum_{i=1}^{i=n}{({{x_i}-\overline x})•({{y_i}-\overline y})}}}{{\sum_{i=1}^{i=n}{{{({{x_i}-\overline x})}^2}}}}$或$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}中,an>0,前n项和为Sn,且Sn=$\frac{{{a_n}({a_n}+1)}}{2}$(n∈N*),则数列{an}的通项公式为an=n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥S-ABCD中,侧棱SA⊥底面ABCD,且底面ABCD是边长为1的正方形,侧棱SA=4,AC与BD相交于点O.
(1)证明:SO⊥BD;
(2)求三棱锥O-SCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下面的各图中,散点图与相关系数r不符合的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案