精英家教网 > 高中数学 > 题目详情
10.已知数列{an}的通项公式为an=$\frac{n}{n+1}$,则数列{an}是(  )
A.递减数列B.递增数列C.常数列D.摆动数列

分析 an=$\frac{n}{n+1}$=1-$\frac{1}{n+1}$,判定an+1-an的符号即可得出.

解答 解:an=$\frac{n}{n+1}$=1-$\frac{1}{n+1}$,
∴an+1-an=$1-\frac{1}{n+2}$-$(1-\frac{1}{n+1})$=$\frac{1}{n+1}-\frac{1}{n+2}$>0,
∴an+1>an
∴数列{an}是单调递增数列.
故选:B.

点评 本题考查了数列的单调性、“作差法”,考查了变形能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知两定点A(-3,0),B(3,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于(  )
A.πB.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题为真命题的是(  )
A.已知x,y∈R,则$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要条件
B.对空间任意一点O与不共线的三点A,B,C,若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{Ob}+z\overrightarrow{OC}$(其中x,y,z∈R),则P,A,B,C四点共面
C.?a,b∈R,$\frac{a+b}{2}≥\sqrt{ab}$
D.?x∈R,sinx+cosx=$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别是F1,F2,上顶点为B点,右焦点F2到直线F1B的距离为$\sqrt{3}$,椭圆M的离心率为e=$\frac{\sqrt{3}}{2}$.
(1)求椭圆M的标准方程;
(2)过原点O作两条互相垂直的射线,与椭圆M交于P、Q两点,问:点O到直线PQ的距离是否为定值?若是,试求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆C1:$\frac{{x}^{2}}{{a_1}^{2}}$+$\frac{{y}^{2}}{{b_1}^{2}}$=1(a1>b1>0)与椭圆C2:$\frac{{x}^{2}}{{a_2}^{2}}$+$\frac{{y}^{2}}{{b_2}^{2}}$=1(a2>b2>0)的焦点相同,且a1>a2,给出四个结论:
①a12-b12=a22-b22
②b1>b2
③a1-a2<b1-b2
④$\frac{a_1}{a_2}$<$\frac{b_1}{b_2}$.
其中正确结论的个数(  )
A.2B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}是递增的等比数列,a1+a5=17,a2a4=16,则公比q=(  )
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,点P在椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)上,F(c,0)是椭圆的右焦点,点A、B是椭圆的顶点,若PF⊥x轴,且$\frac{|OP|}{|AB|}$=$\frac{c}{a}$,则椭圆的离心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),它的一个焦点为F1(-1,0),且经过点M(-1,$\frac{3}{2}$),则椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.命题“?x∈R,使得x2+1>1”的否定为?x∈R,都有x2+1≤1.

查看答案和解析>>

同步练习册答案