精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
已知直角三角形ABC的斜边长AB="2," 现以斜边AB为轴旋转一周,得旋转体,当∠A=30°时,求此旋转体的体积与表面积的大小.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图所示,在棱长为2的正方体中,是底面的中心,分别是的中点,那么异面直线所成角的余弦值等于 (     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知垂直平行四边形所在平面,若,则平行则四边形一定是
A.正方形B.菱形C.矩形D.梯形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)求证:EF∥面PAD;
(2)求证:面PDC⊥面PAB;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E,F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD的底面是矩形,AB1,AD2,SA1,   且SA⊥底面ABCD,若P为直线BC上的一点,使得
(1)求证:P为线段BC的中点;
(2)求点P到平面SCD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分9分)
如图所示的多面体中,已知直角梯形和矩形所在的平面互相垂直,,,,.        
(Ⅰ)证明:平面
(Ⅱ)设二面角的平面角为,求的值;
(Ⅲ)的中点,在上是否存在一点,使得∥平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知的平面直观图A1B1C1是边长为2的正三角形,则原的面积是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P—ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,.
(I)证明:
(II)若PB = 3,求四棱锥P—ABCD的体积.

查看答案和解析>>

同步练习册答案