| A. | 18 | B. | 12 | C. | 7 | D. | 24 |
分析 可作出图形,并取BC的中点D,连接AD,从而可得出AD⊥BD,这样在Rt△ABD中可求出$sin∠BAD=\frac{3}{5}$,进而可求出cos∠BAC的值,从而由向量数量积的计算公式即可求出$\overrightarrow{AB}•\overrightarrow{AC}$的值.
解答 解:如图,取BC中点D,连接AD,则:AD⊥BD;
∴$sin∠BAD=\frac{3}{5}$;
∴$cos∠BAC=1-2si{n}^{2}∠BAD=1-\frac{18}{25}$=$\frac{7}{25}$;
∴$\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AB}||\overrightarrow{AC}|cos∠BAC$=$5×5×\frac{7}{25}=7$.
故选C.
点评 考查等腰三角形的底边的中线也是高线,三角函数的定义,二倍角的余弦公式,以及向量数量积的计算公式.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{7}+\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{9}+\frac{{y}^{2}}{7}$=1 | C. | $\frac{{x}^{2}}{16}+\frac{{y}^{2}}{7}$=1 | D. | $\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com