精英家教网 > 高中数学 > 题目详情
(理科)设数列{an}满足a1=3,an+1=an2-2nan+2.
(1)求a2,a3,a4
(2)先猜想出{an}的一个通项公式,再用数学归纳法证明.
考点:数学归纳法,数列递推式
专题:综合题,点列、递归数列与数学归纳法
分析:(1)根据an+1=an2-2nan+2,利用递推公式,求出a1,a2,a3,a4
(2)总结出规律求出an,然后利用归纳法进行证明,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.
解答: 解:(1)由条件an+1=
a
2
n
-2nan+2
,依次得a2=
a
2
1
-2a1+2=5
a3=
a
2
2
-4a2+2=7
a4=
a
2
3
-6a3+2=9
,…(6分)
(2)由(1),猜想an=2n+1.…(7分)
下用数学归纳法证明之:
①当n=1时,a1=3=2×1+1,猜想成立;        …(8分)
②假设当n=k时,猜想成立,即有ak=2k+1,…(9分)
则当n=k+1时,有ak+1=
a
2
k
-2kak+2=ak(ak-2k)+2=(2k+1)•1+2=2(k+1)+1

即当n=k+1时猜想也成立,…(13分)
综合①②知,数列{an}通项公式为an=2n+1.…(14分)
点评:本题考查数学归纳法,关键是证明n=k+1时,命题成立必须用上归纳假设,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y,z∈Z,且满足x+y+z=3,x3+y3+z3=3,求x2+y2+z2所有可能的值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,AB=BC=a,AA1=2a.
(1)求证:平面AB1D1∥平面C1BD;
(2)求两平面AB1D1与C1BD之间的距离.
(注:两平行平面之间的距离是其中一个平面上任意一点到另一个平面的距离)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=loga(x-3a)(a>0,且a≠1),当P(x,y)是函数y=f(x)图象上的点时,Q(x-a,-y)是函数y=g(x)图象上的点.?
(Ⅰ)求函数y=g(x)的解析式;?
(Ⅱ)当x∈[a+3,a+4]时,恒有f(x)-g(x)≤1,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=6cos2
ωx
2
+
3
sinωx-3(ω>2)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且ABC为正三角形.
(1)求ω的值;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,棱AA1上有一动点M,棱BD1上有一动点N,当MN⊥AA1时,棱长为a.问:线段MN的最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,an+1•an+an+1-an=0
(Ⅰ)证明:数列{
1
an
}为等差数列,并求an
(Ⅱ)设bn=an•an+2,求数列{bn}的前n项和Sn
(Ⅲ)求证:
1
3
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y的回归方程为y=bx+a,若b=0.53,
.
x
=61.75,
.
y
=38.14,则回归方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=x3在点(1,1)处的切线和曲线y=ax2+10x-9也相切,则实数a的值为
 

查看答案和解析>>

同步练习册答案