精英家教网 > 高中数学 > 题目详情
已知a,b表示直线,α,β表示平面,下列推理正确的是(  )
A、α∩β=a,b?α⇒a∥b
B、α∩β=a,a∥b⇒b∥α且b∥β
C、a∥β,b∥β,a?α,b?α⇒α∥β
D、α∥β,α∩γ=a,β∩γ=b⇒a∥b
考点:空间中直线与平面之间的位置关系,空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:利用空间线面关系及面面关系定理,对选项分别分析解答.
解答: 解:对于选项A,α∩β=a,b?α,直线a,b可能相交;故A错误;
对于选项B,α∩β=a,a∥b,直线b可能在两个平面内,故B错误;
对于选项C,a∥β,b∥β,a?α,b?α,直线a,b如果不相交,α,β可能相交,故C错误;
对于选项D,根据面面平行的性质以及α∥β,α∩γ=a得到a∥β,β∩γ=b进一步得到a∥b;故D正确;
故选D.
点评:本题考查了空间线面平行的性质和判定定理的运用,熟练相关的性质定理和判定定理是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=
2
a.
(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD;
(3)求证:∠PCD为二面角P-BC-D的平面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:sin(-
26
3
π
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,求证:
(1)平面A1BD∥平面CB1D1
(2)M、N分别为棱BC和棱CC1的中点,求异面直线AC和MN所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|y=
36-x2
},B={β|2kπ-
π
3
≤β≤2kπ+
π
3
,k∈Z},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:
①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD;
其中正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥S-ABC内接于半径为4的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如下,则此三棱锥的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
1
2
(a+1)x2+ax.
(1)求f(x)的单调区间.
(2)方程f(x)=0仅有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 f(x)=|lgx|,若0<a<1<b且f(a)=f(b),则log2(1+ab)的值为(  )
A、0B、1C、-1D、不确定

查看答案和解析>>

同步练习册答案