精英家教网 > 高中数学 > 题目详情
如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:
①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD;
其中正确的是
 
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:①根据三角形的中位线定理可得四边形EFBC是平面四边形,直线BE与直线CF共面;
②由异面直线的定义即可得出;
③由线面平行的判定定理即可得出;
④可举出反例
解答: 解:由展开图恢复原几何体如图所示:
①在△PAD中,由PE=EA,PF=FD,根据三角形的中位线定理可得EF∥AD,
又∵AD∥BC,∴EF∥BC,
因此四边形EFBC是梯形,故直线BE与直线CF不是异面直线,所以①不正确;
②由点A不在平面EFCB内,直线BE不经过点F,根据异面直线的定义可知:直线BE与直线AF异面,所以②正确;
③由①可知:EF∥BC,EF?平面PBC,BC?平面PBC,∴直线EF∥平面PBC,故③正确;
④如图:假设平面BCEF⊥平面PAD.
过点P作PO⊥EF分别交EF、AD于点O、N,在BC上取一点M,连接PM、OM、MN,
∴PO⊥OM,又PO=ON,∴PM=MN.
若PM≠MN时,必然平面BCEF与平面PAD不垂直.
故④不一定成立.
综上可知:只有②③正确,
故答案为:②③
点评:本题主要考查空间直线的位置关系的判断,正确理解线面、面面平行与垂直的判定与性质定理和异面直线的定义是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两条不同的直线m,n,两个不同的平面α,β,在下列条件中可以得出α⊥β的是(  )
A、m⊥n,n∥α,n∥β
B、m⊥n,α∩β=n,m?α
C、m∥n,n⊥β,m?α
D、m∥n,m⊥α,n⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确的是
 

(1)曲线y=lnx在点(1,0)处的切线方程是y=x-1;
(2)函数y=
16-2x
的值域是[0,4];
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
)
,则
a
b

(4)O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinC
)
,λ∈(0,+∞),则直线1过三角形的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N*),其前n项和为Sn,给出下列四个命题:
①若{an}是等差数列,则三点(10,
S10
10
)
(100,
S100
100
)
(110,
S110
110
)
共线;
②若{an}是等差数列,且a1=-11,a3+a7=-6,则S1、S2、…、Sn这n个数中必然存在一个最大者;
③若{an}是等比数列,则Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比数列;
④若Sn+1=a1+qSn(其中常数a1q≠0),则{an}是等比数列;
⑤若等比数列{an}的公比是q(q是常数),且a1=1,则数列{an2}的前n项和sn=
1-q2n
1-q2

其中正确命题的序号是
 
.(将你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b表示直线,α,β表示平面,下列推理正确的是(  )
A、α∩β=a,b?α⇒a∥b
B、α∩β=a,a∥b⇒b∥α且b∥β
C、a∥β,b∥β,a?α,b?α⇒α∥β
D、α∥β,α∩γ=a,β∩γ=b⇒a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-alnx-x,g(x)=2x-2x
x
+kex
,(e=2.71828…是自然对数的底数).
(1)讨论f(x)在其定义域上的单调性;
(2)若a=2,且不等式xf(x)≥g(x)对于?x∈(0,+∞)恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对一切实数x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(3)=-2.
(1)试判定该函数的奇偶性;
(2)试判断该函数在R上的单调性;
(3)求f(x)在[-12,12]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在同一平面直角坐标系中,函数f(x)=lg(x+1)的图象与函数g(x)=lg(-x+1)的图象关于(  )
A、原点对称B、x轴对称
C、直线y=x对称D、y轴对称

查看答案和解析>>

同步练习册答案