分析 由已知条件推导出数列{$\frac{1}{{S}_{n}}$}是以$\frac{1}{{S}_{1}}$=$\frac{1}{{a}_{1}}$=1为首项,公差d=2的等差数列,由此能求出数列{an}的通项公式.
解答 解:∵当n≥2时,an=Sn-Sn-1=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$,整理得:Sn-1-Sn=2Sn?Sn-1,
由题意知Sn≠0,
∴$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,
即{$\frac{1}{{S}_{n}}$}是以$\frac{1}{{S}_{1}}$=$\frac{1}{{a}_{1}}$=1为首项,公差d=2的等差数列.
∴$\frac{1}{{S}_{n}}$=1+2(n-1)=2n-1,
∴Sn=$\frac{1}{2n-1}$,n∈N*.
当n≥2时,an=Sn-Sn-1=$\frac{1}{2n-1}$-$\frac{1}{2(n-1)-1}$=-$\frac{2}{(2n-1)(2n-3)}$,
当n=1时,a1=S1=1不满足an,
∴an=$\left\{\begin{array}{l}{1,n=1}\\{-\frac{2}{(2n-1)(2n-3)},n≥2}\end{array}\right.$.
点评 本题主要考查数列通项公式的求解,根据等差数列的通项公式求出Sn的表达式是解决本题的关键,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | x-$\sqrt{3}$y-2=0 | B. | $\sqrt{3}$x+y-2=0 | C. | x-$\sqrt{3}$y+2=0 | D. | $\sqrt{3}$x+y+2=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{3}$ | B. | $\frac{17}{2}$ | C. | 13 | D. | $\frac{17+3\sqrt{10}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2x+1 | C. | 3+△x2 | D. | 3+△x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com