精英家教网 > 高中数学 > 题目详情
10.曲线f(x)=$\frac{-4}{\sqrt{3}({e}^{x}+1)}$在点(0,f(0))处的切线方程为(  )
A.x-$\sqrt{3}$y-2=0B.$\sqrt{3}$x+y-2=0C.x-$\sqrt{3}$y+2=0D.$\sqrt{3}$x+y+2=0

分析 求出导数,求得切线的斜率和切点,由斜截式方程即可得到所求切线的方程.

解答 解:f(x)=$\frac{-4}{\sqrt{3}({e}^{x}+1)}$的导数为
f′(x)=$\frac{4}{\sqrt{3}}$•$\frac{{e}^{x}}{({e}^{x}+1)^{2}}$,
即有在点(0,f(0))处的切线斜率为$\frac{4}{\sqrt{3}}$•$\frac{1}{4}$=$\frac{\sqrt{3}}{3}$,
切点为(0,-$\frac{2}{\sqrt{3}}$),
则切线的方程为y=$\frac{\sqrt{3}}{3}$x-$\frac{2\sqrt{3}}{3}$,即为x-$\sqrt{3}$y-2=0.
故选:A.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,正确求导和运用直线方程的形式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=sinxcosx,则f(x)的最小正周期为π,f(x)在$[-\frac{π}{8},\;\frac{π}{4}]$上的最小值为-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=x2-1g(10x+10),若0<b<1,则f(b)的值满足(  )
A.f(b)>f(-$\frac{9}{10}$)B.f(b)>0C.f(b)>f($\frac{3}{2}$)D.f(b)<f($\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2sin($\frac{x}{4}$+2),如果存在实数x1,x2使得对任意的实数,都有f(x1)≤f(x2),则|x1-x2|的最小值是4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=4sinxcos({x+\frac{π}{3}})+\sqrt{3}$.x∈R,
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-$\frac{π}{4}$,$\frac{π}{3}$]上的最大值和最小值及取得最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.己知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,右顶点和上顶点分别为A、B,过点F作x轴的垂线与椭圆在第一象限于点P,直线OP交AB于点Q,若|OQ|=|AQ|,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.Sn为数列{an}的前n项和,己知an>0,an2+3an=6Sn+4.
(I)求{an}的通项公式:
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知Sn是数列{an}的前n项和,且a1=1,an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$(n≥2),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知焦距为2$\sqrt{6}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)经过点A(2,1)
(1)求椭圆C的方程;
(2)已知直线l:x-2y-$\sqrt{6}$=0,直线l′平行于直线l,且与椭圆C交于不同的两点M、N,记直线AM的倾斜角为θ1,直线AN的倾斜角为θ2,试探究θ12是否为定值,并说明理由.

查看答案和解析>>

同步练习册答案