精英家教网 > 高中数学 > 题目详情
15.己知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,右顶点和上顶点分别为A、B,过点F作x轴的垂线与椭圆在第一象限于点P,直线OP交AB于点Q,若|OQ|=|AQ|,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}-1}{2}$

分析 由已知得∠POF=∠BAO,∠PFO=∠BOA,从而△POF∽△BOA,由此能求出椭圆的离心率.

解答 解:∵椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,右顶点和上顶点分别为A、B,
过点F作x轴的垂线与椭圆在第一象限于点P,直线OP交AB于点Q,|OQ|=|AQ|,
∴∠POF=∠BAO,∠PFO=∠BOA,∴△POF∽△BOA,
∴$\frac{OF}{OA}$=$\frac{PF}{OB}$,即$\frac{c}{a}$=$\frac{\frac{{b}^{2}}{a}}{b}$,∴$\frac{c}{a}=\frac{b}{a}$,∴b=c,a=$\sqrt{2}c$
∴椭圆的离心率为:e=$\frac{c}{a}$=$\frac{c}{\sqrt{2}c}=\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查椭圆的离心率的求法,是中档题,解题时要认真审题,注意椭圆性质和数形结合思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设f(x)=lnx,0<x1<x2,若$a=f(\sqrt{{x_1}{x_2}})$,$b=\frac{1}{2}(f({x_1})+f({x_2}))$,$c=f(\frac{{{x_1}+{x_2}}}{2})$,则下列关系式中正确的是(  )
A.a=b<cB.a=b>cC.b=c<aD.b=c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为(  )
A.$\frac{π{r}^{2}}{16}$B.$\frac{3π{r}^{2}}{16}$C.$\frac{π{r}^{2}}{4}$D.$\frac{5π{r}^{2}}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数周期:
(1)y=|sinx|+sinx
(2)y=2sin(2x+$\frac{π}{3}$),x∈[-$\frac{π}{6}$,$\frac{π}{6}$]
(3)y=$\frac{cosx-2}{cosx-1}$
(4)y=2cos(2x+$\frac{π}{3}$),x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线f(x)=$\frac{-4}{\sqrt{3}({e}^{x}+1)}$在点(0,f(0))处的切线方程为(  )
A.x-$\sqrt{3}$y-2=0B.$\sqrt{3}$x+y-2=0C.x-$\sqrt{3}$y+2=0D.$\sqrt{3}$x+y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}中a1=2,a2=1,an+2=$\left\{\begin{array}{l}{\frac{2{a}_{n+1}}{{a}_{n}},{a}_{n+1}≥2}\\{\frac{4}{{a}_{n}},{a}_{n+1}<2}\end{array}\right.$(n∈N*),Sn是数列{an}的前n项和,则S778=2020.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知在平行四边形ABCD中,$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,则$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{7}{3}$B.$\frac{17}{2}$C.13D.$\frac{17+3\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=$\root{3}{{x}^{2}}$-x2+2的图象在以点(1,y1)为切点的切线与坐标轴所围成的三角形面积等于(  ),函数y=x3图象上过点(1,y2)的切线与两条坐标轴所围成的三角形面积等于(  )
A.$\frac{25}{6}$B.$\frac{2}{3}$C.$\frac{2}{3}$或$\frac{1}{24}$D.$\frac{15}{4}$
E.$\frac{7}{3}$F.$\frac{15}{4}$或$\frac{7}{3}$      

查看答案和解析>>

同步练习册答案