精英家教网 > 高中数学 > 题目详情
20.已知$\overrightarrow{p}$,$\overrightarrow{q}$是夹角为60°的两个单位向量,$\overrightarrow{a}$=3$\overrightarrow{p}$-2$\overrightarrow{q}$,$\overrightarrow{b}$=2$\overrightarrow{p}$-3$\overrightarrow{q}$,
(1)求$\overrightarrow{a}$$•\overrightarrow{b}$
(2)求证:($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$)

分析 (1)先计算$\overrightarrow{p}•\overrightarrow{q}$,然后按照乘法公式计算数量积;
(2)计算($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)是否为零即可.

解答 解:(1)$\overrightarrow{p}•\overrightarrow{q}$=cos60°=$\frac{1}{2}$.
$\overrightarrow{a}•\overrightarrow{b}$=(3$\overrightarrow{p}$-2$\overrightarrow{q}$)•(2$\overrightarrow{p}$-3$\overrightarrow{q}$)=6${\overrightarrow{p}}^{2}$-13$\overrightarrow{p}•\overrightarrow{q}$+6${\overrightarrow{q}}^{2}$=6-$\frac{13}{2}$+6=$\frac{11}{2}$,
(2)∵($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-${\overrightarrow{b}}^{2}$=1-1=0,∴($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$).

点评 本题考查了平面向量的数量积运算,向量垂直与数量积的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.经过定点(1,3)作直线l与抛物线y=x2相交于A、B两点.求证:抛物线在A,B两点的切线交点M在一定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}满足a1=2,an+1=2an-n+1,n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}的通项bn=$\frac{1}{n({a}_{n}-{2}^{n-1}+2)}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.写出下面各递推公式表示的数列{an}的通项公式.
(1)a1=1,an+1=2n•an(n≥1);
(2)a1=1,an=an-1+$\frac{1}{n(n-1)}$(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\frac{x+a}{{x}^{2}+1}$为奇函数
(1)求a的值;
(2)求f(-2)的值;
(3)已知f(x)=$\frac{1}{2}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,lga-1gb=1gsinB=-lg$\sqrt{2}$,B为锐角,则A的值是30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知α+β=$\frac{π}{12}$,求$\frac{1-tanα-tanβ-tanα•tanβ}{1+tanα+tanβ-tanα•tanβ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直角坐标平面内,$\overrightarrow{OA}$=(-1,8),$\overrightarrow{OB}$=(-4,1),$\overrightarrow{OC}$=(1,3),求证:△ABC为等腰直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱柱ABCD-A1B1C1D1中,AC⊥B1D,BB1⊥底面ABCD,E、F、H分别为AD、CD、DD1的中点,EF与BD交于点G.
(1)证明:平面ACD1⊥平面BB1D;
(2)证明:GH∥平面ACD1

查看答案和解析>>

同步练习册答案