精英家教网 > 高中数学 > 题目详情
11.设数列{an}满足a1=2,an+1=2an-n+1,n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}的通项bn=$\frac{1}{n({a}_{n}-{2}^{n-1}+2)}$,求数列{bn}的前n项和Sn

分析 (1)由数列{an}满足a1=2,an+1=2an-n+1,n∈N*.变形an+1-(n+1)=2(an-n),再利用等比数列的通项公式即可得出.
(2)bn=$\frac{1}{n({a}_{n}-{2}^{n-1}+2)}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,利用“裂项求和”即可得出.

解答 解:(1)∵数列{an}满足a1=2,an+1=2an-n+1,n∈N*
∴an+1-(n+1)=2(an-n),
∴数列{an-n}是等比数列,首项为1,公比为2,
∴an-n=2n-1,可得∴an=n+2n-1
(2)bn=$\frac{1}{n({a}_{n}-{2}^{n-1}+2)}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴数列{bn}的前n项和Sn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

点评 本题考查了等比数列的通项公式、递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数f(x)=Asin(ωx+φ),A>0,ω>0,$0<φ<\frac{π}{2}$的图象如右图所示,则f(x)=2sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过抛物线y2=2px(p>0)的焦点F,且倾斜角为$\frac{π}{4}$的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于(  )
A.$\frac{2}{5}$B.$\frac{2}{3}$C.$\frac{4}{5}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面四边形ABCD中,∠B=∠D=$\frac{3}{4}$∠C=90°,BC=2,AD=3,则CD=3$\sqrt{3}$-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设|$\overrightarrow{a}$|=2$\sqrt{3}$,$\overrightarrow{b}$=(-1,3).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\overrightarrow{a}$;
(2)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求$\overrightarrow{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线:y=kx-k+1与曲线C:x2+2y2=m有公共点,则m的取值范围是(  )
A.m≥3B.m≤3C.m>3D.m<3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}中,d=2,an=1,Sn=-8,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow{p}$,$\overrightarrow{q}$是夹角为60°的两个单位向量,$\overrightarrow{a}$=3$\overrightarrow{p}$-2$\overrightarrow{q}$,$\overrightarrow{b}$=2$\overrightarrow{p}$-3$\overrightarrow{q}$,
(1)求$\overrightarrow{a}$$•\overrightarrow{b}$
(2)求证:($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{ln(x+a)+b}{{e}^{x}}$(其中e=2.71828…是自然对数的底数),且f′(1)=$\frac{1-b}{e}$.
(1)求a的值,并判断当b≥1时,f′(x)=0在x∈(0,1]上是否有解;
(2)当b=1时,证明:对任意x>0,(x+1)•f′(x)<$\frac{{e}^{-2}+1}{x}$恒成立.

查看答案和解析>>

同步练习册答案