精英家教网 > 高中数学 > 题目详情
已知命题p:若
x-2
+(y+1)2=0,则x=2且y=-1.
(1)写出p的否命题q,并判断q的真假(不必写出判断过程);
(2)写出p的逆否命题r,并判断r的真假(不必写出判断过程).
考点:四种命题
专题:简易逻辑
分析:(1)写出命题p的否命题q并判定真假;
(2)写出命题p的逆否命题,判定原命题的真假可得逆否命题的真假.
解答: 解:(1)命题p的否命题是q:“若
x-2
+(y+1)2≠0
,则x≠2或y≠-1”,
它是真命题;
(2)命题p的逆否命题是r:“若x≠2或y≠-1,则
x-2
+(y+1)2≠0
:,
它是真命题.
点评:本题考查了四种命题之间的关系,解题时应根据题意,写出对应的命题,再判定真假性,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在实数集R上的偶函数f(x)满足f(x+1)=f(x-1),且当x∈[0,1]时,f(x)=x2,则关于x的方程f(x)=
1
2
|x|在[-1,2]上根的个数是(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.
(Ⅰ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
(Ⅱ)求二面角F-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:1+
1
2
+
1
3
+…+
1
n
<2
n
(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=3,求下列各式的值
(1)
4sinα-cosα
3sinα+5cosα

(2)
sin2-2sinα•cosα-cos2α
4cos2-3sin2α

(3)
3
4
sin2α+
1
2
cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AD=1,AB=2,点F在PB上,且AF=PF=FB=
2
,面PAB⊥面ABCD,点E在BC上.
(1)确定点E的位置,使EF∥平面PAC;
(2)在(1)的条件上,求几何体PADCEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx,g(x)=mx-
x3
6
(m∈R);
(1)求曲线y=f(x)在点P(
π
4
,f(
π
4
))处的切线方程;
(2)求函数g(x)的单调递减区间;
(3)若m=1,证明:当x>0时,f(x)<g(x)+
x3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x-sin2x+2
3
sinxcosx.
(Ⅰ)求f(
π
12
)的值和函数f(x)的最小正周期;
(Ⅱ)求f(x)的单调递减区间及最大值,并指出取得最大值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

倾斜角为钝角的直线L过点(1,1),点(4,2)到直线L的距离为
5

(Ⅰ)求直线L的方程;
(Ⅱ)是否存在实数m使圆x2+y2+x-6y+m=0和直线L交于P,Q两点,且OP⊥OQ(O为坐标原点),若存在,求m的值.若不存在说明理由.

查看答案和解析>>

同步练习册答案