精英家教网 > 高中数学 > 题目详情
已知tanα=3,求下列各式的值
(1)
4sinα-cosα
3sinα+5cosα

(2)
sin2-2sinα•cosα-cos2α
4cos2-3sin2α

(3)
3
4
sin2α+
1
2
cos2α.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)原式分子分母同除以cosα,再把tanα=3代入,运算可得结果.
(2)原式的分子分母同除以cos2α,再把tanα=3代入,运算可得结果.
(3)把要求的式子利用“1”的代换可得
3
4
•sin2α+
1
2
•cos2α
sin2α+cos2α
,即
3
4
•tan2α+
1
2
tan2α+1
,再把tanα=3代入,运算可得结果.
解答: 解:(1)∵tanα=3,原式分子分母同除以cosα可得,
原式=
4tanα-1
3tanα+5
=
4×3-1
3×3+5
=
11
14

(2)∵tanα=3,原式的分子分母同除以cos2α可得:
原式=
tan2α-2tanα-1
4-3tan2α
=
9-2×3-1
4-3×32
=-
2
23

(3))∵tanα=3,用“1”的代换可得
原式=
3
4
sin2α+
1
2
cos2α
sin2α+cos2α
=
3
4
tan2α+
1
2
tan2α+1
=
3
4
×9+
1
2
9+1
=
29
40
点评:本题主要考查同角三角函数的基本关系的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

表达算法的基本逻辑结构不包括(  )
A、顺序结构B、条件结构
C、循环结构D、计算结构

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)设cn=an•bn(n=1,2,3…),Tn为数列{cn}的前n项和,若2a2-5a>2Tn恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1、DB的中点.
(Ⅰ)求证:CF⊥EF;
(Ⅱ)求三棱柱B1-CEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,计算得
10
i=1
xi=80,
10
i=1
yi=20,
10
i=1
xiyi=184,
10
i=1
xi2=720.
(1)求家庭的月储蓄对月收入的回归方程;
(2)判断月收入与月储蓄之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:若
x-2
+(y+1)2=0,则x=2且y=-1.
(1)写出p的否命题q,并判断q的真假(不必写出判断过程);
(2)写出p的逆否命题r,并判断r的真假(不必写出判断过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=2,an+1=
2n+1an
(n+
1
2
)an+2n
(n∈N*
(1)设bn=
2n
an
,求数列{bn}的通项公式;
(2)设cn=
1
n(n+1)an+1
,数列{cn}的前n项和为Sn,不等式
1
4
m2-
1
4
m>Sn对一切n∈N*成立,求m得范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,已知cosA=
3
5
,sinB=
5
13
,求sinC值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差不为零的无穷等差数列{an}中,a2、a8、a38成等比数列
(Ⅰ)求
a3+a5
a4+a6
的值;
(Ⅱ)依次从该数列中取出一系列项构成一个等比数列,记作{an},已知它的第一项为a n1=a2,第二项为a n2=a5,求此等比数列的公比q及和sk=n1+n2+…+nk

查看答案和解析>>

同步练习册答案