精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系xOy中,若双曲线$\frac{{y}^{2}}{{m}^{2}+1}$-$\frac{{x}^{2}}{2m+6}$=1的离心率为$\sqrt{5}$,则实数m的值为1或-$\frac{1}{2}$.

分析 根据双曲线的方程求出a,b的值,结合双曲线的离心率建立方程关系进行求解即可.

解答 解:∵m2+1≥1,
∴由双曲线$\frac{{y}^{2}}{{m}^{2}+1}$-$\frac{{x}^{2}}{2m+6}$=1的方程得a2=m2+1,b2=2m+6>0,得m>-3,
则c2=m2+1+2m+6=m2+2m+7,
∵双曲线的离心率e=$\sqrt{5}$,
∴e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{m}^{2}+2m+7}{{m}^{2}+1}$=5,
即m2+2m+7=5m2+5,
即4m2-2m-2=0,得2m2-m-1=0,
得m=1或m=-$\frac{1}{2}$,
故答案为:1或-$\frac{1}{2}$,

点评 本题主要考查双曲线离心率的应用,根据条件建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.下列说法中正确的有:①③④.(将你认为正确的命题序号全部填在横线上)
①电影院调查观众的某一指标,通知“每排(每排人数相等)座位号为14的观众留下来座谈”是系统抽样;
②推理过程“因为指数函数y=ax是增函数,而y=2x是指数函数,所以y=2x是增函数”中,小前提是错误的;
③对命题“正三角形与其内切圆切于三边中点”可类比猜想:正四面体与其内切球切于各面中心;
④在判断两个变量y与x是否相关时,选择了3个不同的模型,它们的相关指数R2分别为:模型1为0.98,模型2为0.80,模型3为0.50.其中拟合效果最好的是模型1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》[三三]:“今有宛田,下周三十步,径十六步.问为田几何?”译成现代汉语其意思为:有一块扇形的田,弧长30步,其所在圆的直径是16步,问这块田的面积是多少(平方步)?(  )
A.120B.240C.360D.480

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知焦点在y轴上的椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),离心率为$\frac{\sqrt{3}}{2}$,且过点($\frac{\sqrt{2}}{2}$,$\sqrt{2}$),不过椭圆顶点的动直线l:y=kx+m与椭圆C交于A、B两点.求:
(1)椭圆C的标准方程;
(2)求三角形AOB面积的最大值,并求取得最值时直线OA、OB的斜率之积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(1)若点(-$\sqrt{3}$,1)在椭圆上,且(2,0)是它的一个焦点,求椭圆方程;
(2)若B为椭圆的下顶点,F是椭圆的右焦点,直线BF与椭圆的另一个交点为D,P为椭圆右准线上一点,是否存在这样的椭圆使得△PBD为等边三角形?若存在,求出椭圆的离心率;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数y=f(x)的图象与函数y=3x+a的图象关于直线y=-x对称,且f(-1)+f(-3)=3,则实数a等于(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.图为一块平行四边形园地ABCD,经测量,AB=20米,BC=10米,∠ABC=120°,拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分分别种植不同的花卉,设EB=x,EF=y(单位:米)
(1)当点F与点C重合时,试确定点E的位置;
(2)求y关于x的函数关系式,并确定点E、F的位置,使直路EF长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1的左右焦点分别为F1、F2,点P为双曲线上任意一点,点Q是以点P为圆心,|PF1|为半径的圆上的任意点,那么|QF2|(  )
A.有最小值8B.有最大值8C.有最小值4$\sqrt{5}$D.有最大值4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,
(1)求证:cos2$\frac{A+B}{2}$+cos2$\frac{C}{2}$=1;
(2)若cos($\frac{π}{2}$+A)sin($\frac{3}{2}$π+B)tan(C-π)<0,求证:△ABC为钝角三角形.

查看答案和解析>>

同步练习册答案