精英家教网 > 高中数学 > 题目详情
8.已知数列{an}满足对任意n∈N*,an>0,且a2n,a2n+1,a2n+2成等比数列,a2n-1,a2n,a2n+1成等差数列.
(1)若a2=a5一2=1,求a1的值;
(2)证明:数列{$\sqrt{{a}_{2n}}$}是等差数列;
(3)设a1-a2<0,求证:对任意n∈N*,且n≥2,都有$\frac{{a}_{n+1}}{{a}_{n}}$$<\frac{{a}_{2}}{{a}_{1}}$.

分析 (1)由已知a3,a4,a5成等差数列,a2,a3,a4成等比数列,a1,a2,a3成等差数列,由此能求出a1
(2)由已知得2a2n=a2n-1+a2n+1,${{a}_{2n+1}}^{2}={{a}_{2n+2}•{a}_{2n}}^{\;}$,${{a}_{2n-1}}^{2}={a}_{2n-2}{a}_{2n}$,n≥2,由此能证明数列{$\sqrt{{a}_{2n}}$}是等差数列.
(3)由数列{$\sqrt{{a}_{2n}}$}是等差数列,推导出a2n=$\frac{[({a}_{2}-{a}_{1})n+{a}_{1}]^{2}}{{a}_{2}}$,由此根据当n=2m,m∈N*和当n=2m-1,m∈N*,m≥2两种情况分类讨论,能证明对任意n∈N*,且n≥2,都有$\frac{{a}_{n+1}}{{a}_{n}}$$<\frac{{a}_{2}}{{a}_{1}}$.

解答 解:(1)∵数列{an}满足对任意n∈N*,an>0,a2n-1,a2n,a2n+1成等差数列,
∴a3,a4,a5成等差数列,设公差为d,则a3=3-2d,a4=3-d.
∵a2n,a2n+1,a2n+2成等比数列,∴a2,a3,a4成等比数列,
∴${a}_{2}=\frac{{{a}_{3}}^{2}}{{a}_{4}}$=$\frac{(3-2d)^{2}}{3-d}$,
∵a2=1,∴$\frac{(3-2d)^{2}}{3-d}=1$,解得d=2或d=$\frac{3}{4}$,∵an>0,∴d=$\frac{3}{4}$,
∵a1,a2,a3成等差数列,
∴a1=2a2-a3=2-(3-2d)=$\frac{1}{2}$.
证明:(2)∵a2n-1,a2n,a2n+1成等差数列,a2n,a2n+1,a2n+2成等比数列,
∴2a2n=a2n-1+a2n+1,${{a}_{2n+1}}^{2}={{a}_{2n+2}•{a}_{2n}}^{\;}$,
∴${{a}_{2n-1}}^{2}={a}_{2n-2}{a}_{2n}$,n≥2,
∴$\sqrt{{a}_{2n-2}{a}_{2n}}$+$\sqrt{{a}_{2n}{a}_{2n+2}}$=2a2n
∵an>0,∴$\sqrt{{a}_{2n-2}}+\sqrt{{a}_{2n+2}}$=2$\sqrt{{a}_{2n}}$,
∴数列{$\sqrt{{a}_{2n}}$}是等差数列.
(3)∵数列{$\sqrt{{a}_{2n}}$}是等差数列,∴$\sqrt{{a}_{2n}}$=$\sqrt{{a}_{2}}+(n-1)(\sqrt{{a}_{1}}-\sqrt{{a}_{2}})$,
∵a1,a2及a2n,a2n+1,a2n+2成等比数列,a2n-1,a2n,a2n+1成等差数列,
∴${a}_{1}=\frac{(2{a}_{2}-{a}_{1})^{2}}{{a}_{2}}$,
∴$\sqrt{{a}_{2n}}=\sqrt{{a}_{2}}+(n-1)(\sqrt{{a}_{1}}-\sqrt{{a}_{2}})$=$\frac{({a}_{2}-{a}_{1})n+{a}_{1}}{\sqrt{{a}_{2}}}$,
∴a2n=$\frac{[({a}_{2}-{a}_{1})n+{a}_{1}]^{2}}{{a}_{2}}$,
∴${a}_{2n+2}=\frac{[({a}_{2}-{a}_{1})(n+1)+{{a}_{1}}^{2}]}{{a}_{2}}$,
从而${a}_{2n+1}=\sqrt{{a}_{2n}{a}_{2n+2}}$=$\frac{[({a}_{2}-{a}_{1})n+{a}_{1}][({a}_{2}-{a}_{1})(n+1)+{a}_{1}]}{{a}_{2}}$,
∴${a}_{2n-1}=\frac{[({a}_{2}-{a}_{1})(n-1)+{a}_{1}][({a}_{2}-{a}_{1})n+{a}_{1}]}{{a}_{2}}$,
①当n=2m,m∈N*时,
$\frac{{a}_{n+1}}{{a}_{n}}-\frac{{a}_{2}}{{a}_{1}}$=$\frac{\frac{[({a}_{2}-{a}_{1})m+{a}_{1}][({a}_{2}-{a}_{1})(m+1)+{a}_{1}]}{{a}_{2}}}{\frac{[({a}_{2}-{a}_{1})m+{a}_{1}]^{2}}{{a}_{2}}}$-$\frac{{a}_{2}}{{a}_{1}}$
=$\frac{({a}_{2}-{a}_{1})(m+1)+{a}_{1}}{({a}_{2}-{a}_{1})m+{a}_{1}}$-$\frac{{a}_{2}}{{a}_{1}}$
=-$\frac{m({a}_{1}-{a}_{2})^{2}}{{a}_{1}[({a}_{2}-{a}_{1})m+{a}_{1}]}$<0.
②当n=2m-1,m∈N*,m≥2时,
$\frac{{a}_{n+1}}{{a}_{n}}$-$\frac{{a}_{2}}{{a}_{1}}$=$\frac{\frac{[({a}_{2}-{a}_{1})m+{a}_{1}]^{2}}{{a}_{2}}}{\frac{[({a}_{2}-{a}_{1})(m-1)+{a}_{1}][({a}_{2}-{a}_{1})m+{a}_{1}]}{{a}_{2}}}$-$\frac{{a}_{2}}{{a}_{1}}$
=$\frac{({a}_{2}-{a}_{1})m+{a}_{1}}{({a}_{2}-{a}_{1})(m-1)+{a}_{1}}-\frac{{a}_{2}}{{a}_{1}}$
=-$\frac{(m-1_({a}_{1}-{a}_{2})^{2}}{{a}_{1}[({a}_{2}-{a}_{1})(m-1)+{a}_{1}]}$<0.
综上,对任意n∈N*,且n≥2,都有$\frac{{a}_{n+1}}{{a}_{n}}$$<\frac{{a}_{2}}{{a}_{1}}$.

点评 本题考查数列的首项的求法,考查等差数列的证明,考查不等式的证明,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知直线l1:4x+y=0,直线l2:x+y-1=0以及l2上一点P(3,-2).求圆心在l1上且与直线l2相切于点P的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow{a}$=(cosx+sinx,sinx),$\overrightarrow{b}$=(cosx-sinx,2cosx)
(1)记f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,则f($\frac{π}{4}$)的值.
(2)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求tanx的值.
(3)求证:向量$\overrightarrow{a}$与向量$\overrightarrow{b}$不可能平行.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知5,3分别为递减的等差数列{an}中的相邻两项,且数列{an}的前8项和为32,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前20项和Sn的大小为$\frac{20}{319}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的各项都为正数,其前n项和为Sn
已知对任意n∈N,Sn是an2和an的等差中项.
(I)求数列{an}的通项公式an
(Ⅱ)令cn=$\frac{1}{{a}_{n+1}^{2}-1}$,求{cn}的前n项和Wn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}的前n项和为Sn且a2+a8=-8,a6=0,数列{bn}满足$\frac{{b}_{n+1}}{{b}_{n}}$=3,且b3=9,
(1)求数列{an}的通项公式与前n项和Sn的表达式;
(2)记cn=($\frac{{a}_{n}}{4}+7$)•bn,求数列{cn}的前n项和Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆心C(1,3),圆上一点A(-4,-1),求直径AB的另一个端点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足条件$\left\{\begin{array}{l}{2x-y-1≤0}\\{2x+y+1≥0}\\{y≤x+1}\end{array}\right.$,则z=x+3y的最大值为(  )
A.16B.12C.11D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.第31届夏季奥林匹克运动会将于2016年8月5日-21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
第30届伦敦第29届北京第28届雅典第27届悉尼第26届亚特兰大
中国3851322816
俄罗斯2423273226
(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(Ⅱ)下表是近五届奥运会中国代表团获得的金牌数之和y(从第26届算起,不包括之前已获得的金牌数)随时间x变化的数据:
时间x(届)2627282930
金牌数之和y(枚)164476127165
作出散点图如图1:

(i)由图可以看出,金牌数之和y与时间x之间存在线性相关关系,请求出y关于x的线性回归方程;
(ii)利用(i)中的回归方程,预测今年中国代表团获得的金牌数.
参考数据:$\overline{x}$=28,$\overline{y}$=85.6,$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)=381,$\sum_{i=1}^{n}$(xi-$\overline{x}$)2=10
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=bx+a的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案