精英家教网 > 高中数学 > 题目详情
20.如图,将边长为1的正方形ABCD,沿对角线BD折起来,使平面ABD⊥平面C′BD,则AC′=(  )
A.1B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

分析 将边长为1的正方形ABCD沿对角线BD折起来,使平面ABD⊥平面C′BD,通过解三角形求出AC′.

解答 解:取BD的中点O,连接OA,OC′,则
∵将边长为1的正方形ABCD沿对角线BD折起来,使平面ABD⊥平面C′BD,
∴AO⊥CO,AO=CO=$\frac{\sqrt{2}}{2}$,
∴AC′=$\sqrt{(\frac{\sqrt{2}}{2})^{2}+(\frac{\sqrt{2}}{2})^{2}}$=1
故选:A.

点评 本题是基础题,考查平面图形的折叠与展开,求出两点之间的距离,正确处理折叠前后的关系是解好这类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知(1-2x)7=a0+a1x+a2x2+…a7x7
(1)求(a0+a2+a4+a62-(a1+a3+a5+a72的值;
(2)求|ai|(其中i=1,2,…,7)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b∈R,函数f(x)=a+ln(x+1)的函数与g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+bx的图象交点(0,0)处有公共切线.
(1)证明:不等式f(x)≤g(x)对一切x∈(-1,+∞)恒成立;
(2)设-1<x1<x2,当x∈(x1,x2)时,证明:$\frac{f(x)-f({x}_{1})}{x-{x}_{1}}$>$\frac{f(x)-f({x}_{2})}{x-{x}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上中点,且BF⊥平面ACE.
(1)求证:AE∥平面BFD;
(2)求证:AE⊥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)为R上的奇函数,且当x≥0时,f(x)=3x-a,则f(-2)=(  )
A.-10B.-8C.10D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的焦点F作弦AB,若丨AF丨=d1,丨FB丨=d2,那么$\frac{1}{{d}_{1}}+\frac{1}{{d}_{2}}$的值为$\frac{2a}{{b}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知曲线y=x2+2x-1在点M处的切线与x轴平行,则点M的坐标是(  )
A.(-2,2)B.(-2,-2)C.(-1,2)D.(-1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,PA⊥面ABC,△ABC中BC⊥AC,则△PBC是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=$\frac{sinx}{x}$,并且$\frac{π}{3}$<a<b<$\frac{2π}{3}$,则下列各结论中正确的是(  )
A.f(a)<f($\sqrt{ab}$)<f($\frac{a+b}{2}$)B.f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(b)C.f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(a)D.f(b)<f($\frac{a+b}{2}$)<f($\sqrt{ab}$)

查看答案和解析>>

同步练习册答案