ÒÑÖªÍÖÔ²M£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊe=
1
2
£¬×ó×¼Ïß·½³ÌΪx=-4£®
£¨1£©ÇóÍÖÔ²MµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖª¹ýÍÖÔ²
x2
a2
+
y2
b2
=1
ÉÏÒ»µã£¨x0£¬y0£©×÷ÍÖÔ²µÄÇÐÏߣ¬ÇÐÏß·½³ÌΪ
x0x
a2
+
y0y
b2
=1
£®ÏÖ¹ýÍÖÔ²MµÄÓÒ½¹µã×÷бÂʲ»Îª0µÄÖ±ÏßlÓÚÍÖÔ²½»ÓÚA£¬BÁ½µã£¬¹ýA£¬B·Ö±ð×÷ÍÖÔ²µÄÇÐÏßl1£¬l2£®
¢ÙÖ¤Ã÷£ºl1£¬l2µÄ½»µãPÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£»
¢ÚÇó¡÷ABPÃæ»ýµÄ×îСֵ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©¸ù¾ÝÍÖÔ²M£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊe=
1
2
£¬×ó×¼Ïß·½³ÌΪx=-4£¬½¨Á¢·½³Ì×飬Çó³ö¼¸ºÎÁ¿£¬¼´¿ÉÇó³öÍÖÔ²MµÄ±ê×¼·½³Ì£»
£¨2£©¢ÙÉèÖ±ÏßAB£ºx=my+1£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòÁ½ÇÐÏß·½³ÌΪ
x1x
4
+
y1y
3
=1
£¬
x2x
4
+
y2y
3
=1
£¬¿ÉµÃ½»µãPµÄ×Ý×ø±ê£¬½ø¶øÇó³öPµÄºá×ø±ê£¬¼´¿ÉµÃ³ö½áÂÛ£»
¢ÚÖ±ÏßAB£ºx=my+1£¬´úÈë
x2
4
+
y2
3
=1
£¬ÀûÓÃΤ´ï¶¨Àí£¬Çó³öÏÒ³¤|AB|£¬Çó³öP£¨4£¬-3m£©µ½Ö±ÏßABµÄ¾àÀ룬¿ÉµÃ¡÷ABPÃæ»ý£¬»»Ôª£¬¼´¿ÉÇó³ö¡÷ABPÃæ»ýµÄ×îСֵ£®
½â´ð£º £¨1£©½â£º¡ßÍÖÔ²M£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊe=
1
2
£¬×ó×¼Ïß·½³ÌΪx=-4£¬
¡à
c
a
=
1
2
a2
c
=4
£¬¡àa=2£¬c=1£¬
¡àb=
a2-c2
=
3
£¬
¡àÍÖÔ²MµÄ±ê×¼·½³ÌΪ
x2
4
+
y2
3
=1
£»
£¨2£©¢ÙÖ¤Ã÷£ºÉèÖ±ÏßAB£ºx=my+1£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòÁ½ÇÐÏß·½³ÌΪ
x1x
4
+
y1y
3
=1
£¬
x2x
4
+
y2y
3
=1
£¬
¿ÉµÃ½»µãPµÄ×Ý×ø±êΪy=
3(x2-x1)
x2y1-x1y2
=
3(my2-my1)
(my2+1)y1-(my1+1)y2
=-3m£¬
ÉÏʽ×÷²î¿ÉµÃ
mx
4
+
y
3
=0
£¬
y=-3m´úÈ룬¿ÉµÃx=-4£¬
¡àl1£¬l2µÄ½»µãPÔÚÒ»Ìõ¶¨Ö±Ïßx=-4ÉÏ£»
¢Ú½â£ºP£¨4£¬-3m£©µ½Ö±ÏßABµÄ¾àÀëd=
|-3m2-4+1|
1+m2
£¬
Ö±ÏßAB£ºx=my+1£¬´úÈë
x2
4
+
y2
3
=1
£¬¿ÉµÃ£¨3m2+4£©y2+6my-9=0£¬
¡ày1+y2=-
6m
3m2+4
£¬y1y2=
9
3m2+4
£¬
¡à|AB|=
1+m2
•|y1-y2|=
12(m2+1)
3m2+4

¡à¡÷ABPÃæ»ýΪS=
1
2
|AB|d=
18(
m2+1
)3
3(m2+1)+1
£¬
Éèt=
m2+1
¡Ý1£¬ÔòS=
18t3
3t2+1
=
18
3
t
+
1
t3
£¬
Áîu=
1
t
¡Ê£¨0£¬1]£¬ÔòS=
18
3u+u3
£¬ÔÚu¡Ê£¨0£¬1]Éϵ¥µ÷µÝ¼õ£¬
¡àµ±u=1£¬Ôòt=1£¬¼´m=0ʱ£¬¡÷ABPÃæ»ýµÄ×îСֵΪ
9
2
£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ·½³ÌÓëÐÔÖÊ£¬¿¼²éÍÖÔ²µÄÇÐÏß·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÈý½ÇÐÎÃæ»ýµÄ¼ÆË㣬ÄѶȴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ij³ÌÐò¿òͼÈçͼËùʾ£¬Ôò¸Ã³ÌÐòÔËÐкóÊä³öµÄÖµÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬ÈôAB=2£¬AC=3£¬¡ÏA=60¡ã£¬ÔòBCµÄ³¤Îª£¨¡¡¡¡£©
A¡¢
19
B¡¢
13
C¡¢3
D¡¢
7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

PΪԲA£º£¨x+1£©2+y2=8Éϵ͝µã£¬µãB£¨1£¬0£©£®Ïß¶ÎPBµÄ´¹Ö±Æ½·ÖÏßÓë°ë¾¶PAÏཻÓÚµãM£¬¼ÇµãMµÄ¹ì¼£Îª¦££®
£¨I£©ÇóÇúÏߦ£µÄ·½³Ì£»
£¨¢ò£©µ±µãPÔÚµÚÒ»ÏóÏÞ£¬ÇÒcos¡ÏBAP=
2
2
3
ʱ£¬ÇóµãMµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ËÄÀâ×¶A-BCDEÖУ¬¡÷ABCÊÇÕýÈý½ÇÐΣ¬ËıßÐÎBCDEÊǾØÐΣ¬ÇÒÆ½ÃæABC¡ÍÆ½ÃæBCDE£¬AB=2£¬AD=4£®
£¨1£©ÈôµãGÊÇAEµÄÖе㣬ÇóÖ¤£ºAC¡ÎÆ½ÃæBDG
£¨2£©ÈôFÊÇÏß¶ÎABµÄÖе㣬ÇóÈýÀâ×¶B-EFCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É輯ºÏM={f(x)|x¡Ê(0£¬+¡Þ)£¬f(x)=f(
1
x
)}
£®
£¨1£©ÒÑÖªº¯Êýf(x)=
x
1+x2
(x£¾0)
£¬ÇóÖ¤£ºf£¨x£©¡ÊM£»
£¨2£©¶ÔÓÚ£¨1£©Öеĺ¯Êýf£¨x£©£¬ÇóÖ¤£º´æÔÚ¶¨ÒåÓòΪ[2£¬+¡Þ£©µÄº¯Êýg£¨x£©£¬Ê¹µÃg(x+
1
x
)=f(x)
¶ÔÈÎÒâx£¾0³ÉÁ¢£®
£¨3£©¶ÔÓÚÈÎÒâf£¨x£©¡ÊM£¬ÇóÖ¤£º´æÔÚ¶¨ÒåÓòΪ[2£¬+¡Þ£©µÄº¯Êýg£¨x£©£¬Ê¹µÃµÈʽg(x+
1
x
)=f(x)
¶ÔÈÎÒâx£¾0³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÈýÀâÖùABC-A1B1C1µÄ²àÀâAA1¡ÍÆ½ÃæABC£¬¡÷ABCΪÕýÈý½ÇÐΣ¬²àÃæAA1C1CÊÇÕý·½ÐΣ¬EÊÇA1BµÄÖе㣬FÊÇÀâCC1Éϵĵ㣮
£¨¢ñ£©µ±VE-ABF=
3
3
ʱ£¬ÇóÕý·½ÐÎAA1C1CµÄ±ß³¤£»
£¨¢ò£©µ±A1F+FB×îСʱ£¬ÇóÖ¤£ºAE¡ÍÆ½ÃæA1FB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þÏîʽ£¨
3x
-
1
x
£©nµÄÕ¹¿ªÊ½ÖеĵÚÈýÏîΪ³£ÊýÏÔòn=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª
AB
ºÍ
AC
ÊÇÆ½ÃæÄÚÁ½¸öµ¥Î»ÏòÁ¿£¬ËüÃǵļнÇΪ60¡ã£¬Ôò2
AB
-
AC
Óë
CA
µÄ¼Ð½ÇÊÇ£¨¡¡¡¡£©
A¡¢30¡ãB¡¢60¡ã
C¡¢90¡ãD¡¢120¡ã

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸