精英家教网 > 高中数学 > 题目详情
5.在△ABC中,内角A,B,C对应的边长分别为a,b,c,已知$\overrightarrow{m}$=(c,a+b),$\overrightarrow{n}$=(a-b,acosB-$\frac{1}{2}$b),$\overrightarrow{m}$∥$\overrightarrow{n}$.
(I)求角A;
(II)若a=$\sqrt{3}$,求b+c的取值范围.

分析 (I)根据平面向量的共线定理,利用余弦定理即可求出A的值;
(II)由正弦定理求出b、c的表达式,计算b+c的取值范围即可.

解答 解:(I)∵$\overrightarrow{m}$∥$\overrightarrow{n}$,∴c•(acosB-$\frac{1}{2}$b)-(a+b)(a-b)=0,
即c(acosB-$\frac{1}{2}$b)=a2-b2,-----(1分)
由余弦定理得
a2+c2-b2-bc=2a2-2b2,a2=b2+c2-bc;------(3分)
∵a2=b2+c2-2bccosA,∴cosA=$\frac{1}{2}$;--------(4分)
∵A∈(0,π),∴A=$\frac{π}{3}$;--------(5分)
(II)由正弦定理得$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2,
∴b=2sinB,c=2sinC-----(6分)
∴b+c=2sinB+2sinC=2sinB+2sin(A+B)-------(7分)
=2sinB+2sinAcosB+2cosAsinB
=2sinB+2×$\frac{\sqrt{3}}{2}$cosB+2×$\frac{1}{2}$sinB
=3sinB+$\sqrt{3}$cosB
=2$\sqrt{3}$sin(B+$\frac{π}{6}$);--------(9分)
∵B∈(0,$\frac{2π}{3}$),∴B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(B+$\frac{π}{6}$)∈($\frac{1}{2}$,1];--------(11分)
所以b+c∈($\sqrt{3}$,2$\sqrt{3}$].--------(12分)

点评 本题考查了平面向量的共线定理以及正弦、余弦定理的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.数列{an}(n∈N*)中,a1=1,a2=3,a3=5,且an•an+1•an+2•an+3=7,则a2010=(  )
A.1B.3C.5D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合U={-5,-3,1,2,3,4,5,6},集合A={x|x2-7x+12=0},集合B={a2,2a-1,6}.若A∩B={4},且B⊆U,则a等于(  )
A.2或$\frac{5}{2}$B.±2C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在多面体ABCDEF中,四边形ABCD为矩形,△ADE,△BCF均为等边三角形,EF∥AB,EF=AD=$\frac{1}{2}$AB,N为线段PC的中点.
(1)求证:AF∥平面BDN;
(2)求直线BN与平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各图是正方体或正四面体,P,Q,R,S分别是所在棱的中点,这四个点中不共面的一个图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=a(x+$\frac{b}{x}$)+blnx(其中a,b∈R)
(Ⅰ)当b=-4时,若f(x)在其定义域内为单调函数,求a的取值范围;
(Ⅱ)当a=-1时,是否存在实数b,使得当x∈[e,e2]时,不等式f(x)>0恒成立,如果存在,求b的取值范围,如果不存在,说明理由(其中e是自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$y=\sqrt{3}sinx+cosx$的图象可以由函数y=2sinx的图象至少向左平移$\frac{π}{6}$个单位得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点P(-1,2,3)关于xOz平面对称的点的坐标是(-1,-2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=a•ex-1(a为常数),且$f(-1)=\frac{2}{e^2}$
(1)求a值;
(2)设$g(x)=\left\{\begin{array}{l}f(x),x<2\\{log_3}(x-1)\begin{array}{l}{\;}&{x≥2}\end{array}\end{array}\right.$,求不等式g(x)<2的解集.

查看答案和解析>>

同步练习册答案