精英家教网 > 高中数学 > 题目详情
已知对任意x,不等式|x-a|+|x+2|≥4恒成立,求a的取值范围.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:根据绝对值三角不等式可得|x-a|+|x+2|≥|a+2|,再根据|a+2|≥4,求得a的范围.
解答: 解:根据绝对值三角不等式可得|x-a|+|x+2|≥|(x-a)-(x+2)|=|a+2|,
再根据对任意x,不等式|x-a|+|x+2|≥4恒成立,可得|a+2|≥4,
∴a+2≥4,或a+2≤-4,求得 a≥2,或 a≤-6,
故要求的a的取值范围为{a|a≥2,或 a≤-6}.
点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,根据图中数据,可得该几何体的体积是(  )
A、π+
2
B、π+2
2
C、2π+
2
D、2π+2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

正项数列{an}中,a1=2,a2=8,an2an-2=2an-13(n>3).
(1)设bn=log2
an+1
2an
,求证数列{bn}为等比数列,并求通项bn
(2)设cn=nbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=mx-
m
x
-2lnx(m∈R)
(1)若f(x)在[1,+∞)上为单调函数,求m的取值范围;
(2)设g(x)=
2e
x
,若在[1,e]上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=-
3
,求:sinα,cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2n+1,数列{bn}满足bn=
1
(n+1)log2an
+n.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=x2+ax-lnx,g(x)=ex.(其中e是自然对数的底数)
(1)当a=-1时,求函数y=f(x)的极值;
(2)令F(x)=
f(x)
g(x)
,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2+bx+c在点(1,2)处的切线与直线x+y+2=0垂直,求函数y=x2+bx+c的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*
(1)求an
(2)bn

查看答案和解析>>

同步练习册答案