12£®ÔÚ¹«²î²»Îª0µÄµÈ²îÊýÁÐ{an}ÖУ¬a2£¬a4£¬a8³É¹«±ÈΪa2µÄµÈ±ÈÊýÁУ®
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©ÉèÊýÁÐ{bn}Âú×ãbn=$\left\{\begin{array}{l}{{2}^{{a}_{n}}£¬n=2k£¬k¡Ê{N}^{+}}\\{2{a}_{n}£¬n=2k-1£¬k¡Ê{N}^{+}}\end{array}\right.$£®
¢ÙÇóÊýÁÐ{bn}µÄǰnÏîºÍΪTn£»
¢ÚÁîc2n-1=$\frac{{b}_{2n}}{{b}_{2n-1}}$£¨n¡ÊN+£©£¬ÇóʹµÃc2n-1£¾10³ÉÁ¢µÄËùÓÐnµÄÖµ£®

·ÖÎö £¨I£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬Í¨¹ý$\left\{\begin{array}{l}{£¨{a}_{1}+3d£©^{2}=£¨{a}_{1}+d£©£¨{a}_{1}+7d£©}\\{{a}_{1}+3d=£¨{a}_{1}+d£©^{2}}\end{array}\right.$£¬¼ÆËã¼´¿É£»
£¨II£©Í¨¹ý£¨I£©Öªbn=$\left\{\begin{array}{l}{{2}^{n}£¬n=2k£¬k¡Ê{N}^{*}}\\{2n£¬n=2k-1£¬n¡Ê{N}^{*}}\end{array}\right.$£¬¢Ù·ÖnΪżÊý¡¢nÎªÆæÊýÌÖÂÛ¼´¿É£»¢Úc2n-1=$\frac{{2}^{2n-1}}{2n-1}$£¬Áît=2n-1£¬Ôòc2n-1£¾10ת»¯Îª${c}_{t}=\frac{{2}^{t}}{t}£¾10$£¬ÌÖÂÛÊýÁÐ{ct}µÄµ¥µ÷ÐÔ¼´¿É£®

½â´ð ½â£º£¨I£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬
ÓÉÌâ¿ÉÖª$\left\{\begin{array}{l}{{{a}_{4}}^{2}={a}_{2}•{a}_{8}}\\{{a}_{4}={a}_{2}•{a}_{2}}\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{£¨{a}_{1}+3d£©^{2}=£¨{a}_{1}+d£©£¨{a}_{1}+7d£©}\\{{a}_{1}+3d=£¨{a}_{1}+d£©^{2}}\end{array}\right.$£¬
½âµÃa1=d=1£¬
¡àan=n £¨n¡ÊN*£©£»
£¨II£©ÓÉ£¨I£©Öªbn=$\left\{\begin{array}{l}{{2}^{n}£¬n=2k£¬k¡Ê{N}^{*}}\\{2n£¬n=2k-1£¬n¡Ê{N}^{*}}\end{array}\right.$£¬
¢Ùµ±nΪżÊý£¬¼´n=2kʱ£¬ÆæÊýÏîºÍżÊýÏî¸÷$\frac{n}{2}$Ï
¡àTn=[2+6+¡­+2£¨n-1£©]+£¨22+24+26+¡­+2n£©
=$\frac{\frac{n}{2}£¨2+2n-2£©}{2}$+$\frac{{2}^{2}[1-£¨{2}^{2}£©^{\frac{n}{2}}]}{1-{2}^{2}}$
=$\frac{{n}^{2}}{2}+\frac{{2}^{n+2}}{3}-\frac{4}{3}$£»
µ±nÎªÆæÊý£¬¼´n=2k-1ʱ£¬n+1ΪżÊý£¬
¡àTn=Tn+1-an+1
=$\frac{£¨n+1£©^{2}}{2}+\frac{{2}^{n+3}-4}{3}-{2}^{n+1}$
=$\frac{£¨n+1£©^{2}}{2}+\frac{{2}^{n+1}}{3}-\frac{4}{3}$£¬
×ÛÉÏËùÊö£¬Tn=$\left\{\begin{array}{l}{\frac{{n}^{2}}{2}+\frac{{2}^{n+2}}{3}-\frac{4}{3}£¬}&{n=2k£¬n¡Ê{N}^{*}}\\{\frac{£¨n+1£©^{2}}{2}+\frac{{2}^{n+1}}{3}-\frac{4}{3}£¬}&{n=2k-1£¬n¡Ê{N}^{*}}\end{array}\right.$£»
¢Úc2n-1=$\frac{{b}_{2n}}{{b}_{2n-1}}$=$\frac{{2}^{2n}}{2£¨2n-1£©}$=$\frac{{2}^{2n-1}}{2n-1}$£¬
Áît=2n-1£¬Ôòc2n-1£¾10ת»¯Îª${c}_{t}=\frac{{2}^{t}}{t}£¾10$£¬
¡ß$\frac{{c}_{t+1}}{{c}_{t}}$=$\frac{{2}^{t+1}}{t+1}•\frac{t}{{2}^{t}}$=$\frac{2t}{t+1}$¡Ý1£¬
µ±ÇÒ½öµ±t=1ʱȡµÈºÅ£¬
¡àct+1£¾ct£¾ct-1£¾¡­£¾c2=c1£¬
¡ßc5=$\frac{{2}^{5}}{5}£¼10$£¬${c}_{6}=\frac{{2}^{6}}{6}£¾10$£¬
¡à2n-1¡Ý6£¬½âµÃn$¡Ý\frac{7}{2}$£¬
¡àµ±n¡Ý4£¬n¡ÊN*ʱ£¬c2n-1£¾10£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏʽ£¬Ç°nÏîºÍ¹«Ê½£¬¿¼²é·ÖÀàÌÖÂÛµÄ˼Ï룬¿¼²é»»Ôª·¨£¬¿¼²éÊýÁеĵ¥µ÷ÐÔ£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Éèa£¬b£¬cΪ¿Õ¼äÖÐÈýÌõ²»Í¬µÄÖ±Ïߣ¬¸ø³öÈçÏÂÁ½¸öÃüÌ⣺
¢ÙÈôa¡Îb£¬b¡Íc£¬Ôòa¡Íc£»¢ÚÈôa¡Íb£¬b¡Íc£¬Ôòa¡Îc£®
ÊÔÀà±ÈÒÔÉÏij¸öÃüÌ⣬д³öÒ»¸öÕýÈ·µÄÃüÌ⣺Éè¦Á£¬¦Â£¬¦ÃΪÈý¸ö²»Í¬µÄÆ½Ãæ£¬Èô¦Á¡Î¦Â£¬¦Â¡Í¦Ã£¬Ôò¦Á¡Í¦Ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬OÎª×ø±êÔ­µã£®¶¨ÒåP£¨x1£¬y1£©¡¢Q£¨x2£¬y2£©Á½µãÖ®¼äµÄ¡°Ö±½Ç¾àÀ롱Ϊd£¨P£¬Q£©=|x1-x2|+|y1-y2|£¬ÒÑÖªµãB£¨1£¬0£©£¬µãMÊÇÖ±Ïßkx-y+k+3=0£¨k¡Ý1£©Éϵ͝µã£¬d£¨B£¬M£©µÄ×îСֵΪ2+$\frac{3}{k}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¡¶ÕÅÇð½¨Ëã¾­¡·ÊÇÎÒ¹ú±±ÎºÊ±ÆÚ´óÊýѧ¼ÒÕÅÇð½¨ËùÖø£¬Ô¼³ÉÊéÓÚ¹«Ôª466-485Äê¼ä£®ÆäÖмÇÔØ×ÅÕâôһµÀÌ⣺ijŮ×ÓÉÆÓÚÖ¯²¼£¬Ò»Ìì±ÈÒ»ÌìÖ¯µÃ¿ì£¬¶øÇÒÿÌìÔö¼ÓµÄÊýÁ¿Ïàͬ£®ÒÑÖªµÚÒ»ÌìÖ¯²¼5³ß£¬30Ìì¹²Ö¯²¼390³ß£¬Ôò¸ÃÅ®×ÓÖ¯²¼Ã¿ÌìÔö¼Ó$\frac{16}{29}$³ß£®£¨²»×÷½üËÆ¼ÆË㣩

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=x2•sinx£®¸ø³öÏÂÁÐÈý¸öÃüÌ⣺
£¨1£©f£¨x£©ÊǶ¨ÒåÓòΪRµÄÆæº¯Êý£»
£¨2£©f£¨x£©ÔÚ$[{-\frac{¦Ð}{2}£¬\frac{¦Ð}{2}}]$Éϵ¥µ÷µÝÔö£»
£¨3£©¶ÔÓÚÈÎÒâµÄ${x_1}£¬{x_2}¡Ê[{-\frac{¦Ð}{2}£¬\frac{¦Ð}{2}}]$£¬¶¼ÓУ¨x1+x2£©[f£¨x1£©+f£¨x2£©]¡Ý0£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
A£®£¨1£©£¨2£©B£®£¨1£©£¨3£©C£®£¨2£©£¨3£©D£®£¨1£©£¨2£©£¨3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®¹Û²ìÏÂÃæÊý±í£º

Éè1027ÊǸñíµÚmÐеĵÚn¸öÊý£¬Ôòm+nµÈÓÚ13£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®${¡Ò}_{-4}^{3}$|x+2|dx=£¨¡¡¡¡£©
A£®$\frac{29}{2}$B£®$\frac{21}{2}$C£®-$\frac{11}{2}$D£®$\frac{11}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁк¯ÊýÖУ¬ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏΪÔöº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=x-1B£®y=ln£¨x+1£©C£®y=£¨$\frac{1}{2}$£©xD£®y=x+$\frac{1}{x}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÈôÑù±¾Êý¾Ýx1£¬x2£¬x3£¬¡­£¬xnµÄ·½²îΪ4£¬ÔòÊý¾Ý2x1+1£¬2x2+1£¬2x3+1£¬¡­£¬2xn+1µÄ·½²îÊÇ16£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸