精英家教网 > 高中数学 > 题目详情
17.观察下面数表:

设1027是该表第m行的第n个数,则m+n等于13.

分析 根据上面数表的数的排列规律,1、3、5、7、9…都是连续奇数,第一行1个数,第二行2个数,第三行4个数,第四行8个数,…第10行有29个数,分别求出左起第1个数的规律,按照此规律,问题解决

解答 解:根据上面数表的数的排列规律,1、3、5、7、9…都是连续奇数,
第一行1个数,
第二行2=21个数,且第1个数是3=22-1
第三行4=22个数,且第1个数是7=23-1
第四行8=23个数,且第1个数是15=24-1
    …
第10行有29个数,且第1个数是210-1=1023,
第2个数为1025,第三个数为1027;所以1027是第10行的第3个数,所以m=10,n=3,
所以m+n=13;
故答案为:13.

点评 本题主要考查归纳推理的问题,关键是根据数表,认真分析,找到规律,然后进行计算,即可解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知全集U={1,2,3,4,5,6,7},A={l,2,3},B={2,5,7},则集合M∩(∁UB)=(  )
A.{1}B.{2}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,既是奇函数又存在极值的函数是(  )
A.y=x3B.$y=x+\frac{1}{x}$C.y=x•e-xD.y=ln(-x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ln(ax+1)-$\frac{2ax}{x+2}$(a>0,a为常数).
(Ⅰ)当0$<a≤\frac{1}{2}$时,求f(x)的单调区间;
(Ⅱ)当x≥0时,若不等式f(x)≥2ln2-$\frac{3}{2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在公差不为0的等差数列{an}中,a2,a4,a8成公比为a2的等比数列.
(I)求数列{an}的通项公式;
(II)设数列{bn}满足bn=$\left\{\begin{array}{l}{{2}^{{a}_{n}},n=2k,k∈{N}^{+}}\\{2{a}_{n},n=2k-1,k∈{N}^{+}}\end{array}\right.$.
①求数列{bn}的前n项和为Tn
②令c2n-1=$\frac{{b}_{2n}}{{b}_{2n-1}}$(n∈N+),求使得c2n-1>10成立的所有n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.直角坐标系下,曲线C的参数方程为$\left\{\begin{array}{l}{x=4cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数).
(1)在横坐标系下,曲线C与射线θ=$\frac{π}{4}$和射线θ=-$\frac{π}{4}$分别交于A,B两点,求△AOB的面积;
(2)在直角坐标系下,直线l的参数方程为$\left\{\begin{array}{l}{x=6\sqrt{2-2t}}\\{y=t-\sqrt{2}}\end{array}\right.$(t为参数),求曲线C与直线l的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=$\left\{\begin{array}{l}-3{x^2}+4x,0≤x<1\\ f(x-1)+1,x≥1.\end{array}\right.$,则f(3)=3;若关于x的方程f(x)=ax+1恰有三个不同的解,则实数a的取值范围为(0,$\frac{1}{2}$)∪(4-2$\sqrt{3}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知F为抛物线y2=4x的焦点,点A,B,C在该抛物线上,其中A,C关于x轴对称(A在第一象限),且直线BC经过点F.
(Ⅰ)若△ABC的重心为G($\frac{3}{2},\frac{4}{3}$),求直线AB的方程;
(Ⅱ)设S△ABO=S1,S△CFO=S2,其中O为坐标原点,求S12+S22的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,若$\frac{a+2i}{i}$=b-i(a,b∈R),则a+b=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案