精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
bx
ax2+1
 
(b≠0,a>0)

(1)判断f(x)的奇偶性;(2)若f(1)=
1
2
 log3(4a-b)=
1
2
log24
,求a,b的值.
(1)f(x)定义域为R,f(-x)=
-bx
ax2+1
=-f(x)
,故f(x)是奇函数.
(2)由f(1)=
b
a+1
=
1
2
,则a-2b+1=0.
又log3(4a-b)=1,即4a-b=3.
a-2b+1=0
4a-b=3
,解得a=1,b=1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
b-2x2x+1
为定义在区间[-2a,3a-1]上的奇函数,则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(b<0)的值域为[1,3].

(1)求实数b、c的值;

(2)判断F(x)=lgf(x)在x∈[-1,1]上的单调性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)= (b<0)的值域是[1,3],

(1)求bc的值;

(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;

(3)若t∈R,求证  lgF(|t|-|t+|)≤lg.

查看答案和解析>>

科目:高中数学 来源:2014届江西白鹭洲中学高一下学期第二次月考数学试卷(解析版) 题型:解答题

已知函数f(x)= (b<0)的值域是[1,3],

(1)求bc的值;

(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;

(3)若t∈R,求证:lgF(|t|-|t+|)≤lg.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(b<0)的值域为[1,3].

(1)求实数b、c的值;

(2)判断函数F(x)=lgf(x)在[-1,1]上的单调性;

(3)若t∈R,求证:lg≤F(|t-|-|t+|)≤lg.

查看答案和解析>>

同步练习册答案