精英家教网 > 高中数学 > 题目详情
(2012•肇庆一模)已知四棱锥V-ABCD,底面ABCD是边长为3的正方形,VA⊥平面ABCD,且VA=4,则此四棱锥的侧面中,所有直角三角形的面积的和是(  )
分析:由线面垂直的判定与性质,可证出△VAB、△VAD、△VBC、△VCD都是直角三角形.由VA=4且AB=AD=3,根据勾股定理算出VB=VD=5,最后利用直角三角形的面积公式即可算出所有直角三角形的面积的和.
解答:解:∵VA⊥平面ABCD,BC?平面ABCD,∴VA⊥BC
∵底面ABCD是正方形,可得BC⊥AB,VA∩AB=A
∴BC⊥平面VAB,结合VB?平面VAB,得BC⊥VB
同理可得CD⊥VD
∵VA⊥平面ABCD,AB、AD?平面ABCD,
∴VA⊥AB且VA⊥AD
综上所述,四棱锥的四个面都是直角三角形,
∵VA=4,AB=AD=3,∴VB=VD=
42+32
=5
由此可得,所有直角三角形的面积的和为S=2×
1
2
×3×4+2×
1
2
×3×5=27

故选:C
点评:本题给出底面为正方形且一条侧棱与底面垂直的四棱锥,求它的侧面所有直角三角形面积之和,着重考查了线面垂直的判定与性质、勾股定理与直角三角形的面积公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知四棱锥P-ABCD如图1所示,其三视图如图2所示,其中正视图和侧视图都是直角三角形,俯视图是矩形.
(1)求此四棱锥的体积;
(2)若E是PD的中点,求证:AE⊥平面PCD;
(3)在(2)的条件下,若F是PC的中点,证明:直线AE和直线BF既不平行也不异面.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知数列{an}是一个等差数列,且a2=1,a5=-5,
(1)求{an}的通项公式an和前n项和Sn
(2)设Cn=
5-an2
bn=2Cn
,证明数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知数列{an}是一个等差数列,且a2=1,a5=-5.
(Ⅰ)求{an}的通项an
(Ⅱ)设cn=
5-an2
bn=2cn,求T=log2b1+log2b2+log2b3+…+log2bn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知集合M={0,1,2},集合N满足N⊆M,则集合N的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知函数f(x)=lgx的定义域为M,函数y=
2x,x>2
-3x+1,x<1
的定义域为N,则M∩N=(  )

查看答案和解析>>

同步练习册答案