【题目】某地最近十年粮食需求量逐年上升,下表是部分统计数据:
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量/万吨 | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年需求量与年份之间的线性回归方程;
(2)利用(1)中所求出的线性回归方程预测该地2018年的粮食需求量.
参考公式:,.
科目:高中数学 来源: 题型:
【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差,和患感冒的小朋友人数(/人)的数据如下:
温差 | ||||||
患感冒人数 | 8 | 11 | 14 | 20 | 23 | 26 |
其中,,.
(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合与的关系;
(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)
参考数据:.参考公式:相关系数:,回归直线方程是, ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产了一种新产品,在推广期邀请了100位客户试用该产品,每人一台.试用一个月之后进行回访,由客户先对产品性能作出“满意”或“不满意”的评价,再让客户决定是否购买该试用产品(不购买则可以免费退货,购买则仅需付成本价).经统计,决定退货的客户人数是总人数的一半,“对性能满意”的客户比“对性能不满意”的客户多10人,“对性能不满意”的客户中恰有选择了退货.
(1)请完成下面的列联表,并判断是否有的把握认为“客户购买产品与对产品性能满意之间有关”.
对性能满意 | 对性能不满意 | 合计 | |
购买产品 | |||
不购买产品 | |||
合计 |
(2)企业为了改进产品性能,现从“对性能不满意”的客户中按是否购买产品进行分层抽样,随机抽取6位客户进行座谈.座谈后安排了抽奖环节,共有6张奖券,其中一张印有900元字样,两张印有600元字样,三张印有300元字样,抽到奖券可获得相应奖金.6位客户每人随机抽取一张奖券(不放回),设6位客户中购买产品的客户人均所得奖金为元,求的分布列和数学期望.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱ABC—A1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.
(1)求证:EF∥平面ABC;
(2)BB1⊥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知函数在区间,内各有一个极值点.
(I)求的最大值;
(II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某市高中某学科竞赛中,某一个区4000名考生的参赛成绩统计如图所示.
(1)求这4000名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);
(2)由直方图可认为考生竞赛z成绩服正态分布,其中,分别取考生的平均成绩和考生成绩的方差,那么该区4000名考生成绩超过84.41分(含84.81分)的人数估计有多少人?
附:①,;②,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在极坐标系中,,,,,,弧,所在圆的圆心分别是,,曲线是弧,曲线是线段,曲线是线段,曲线是弧.
(1)分别写出,,,的极坐标方程;
(2)曲线由,,,构成,若点,(),在上,则当时,求点的极坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com