精英家教网 > 高中数学 > 题目详情
15.利用定积分的有关性质和几何意义可以得出定积分$\int_{-1}^1{[{{{(tanx)}^{11}}+{{(cosx)}^{21}}}]dx=}$(  )
A.$2\int_0^1{[{{{(tanx)}^{11}}+{{(cosx)}^{21}}}]dx}$B.0
C.$2\int_0^1{{{(cosx)}^{21}}dx}$D.2

分析 利用定积分的运算法则以及几何意义对式子化简即可.

解答 解:$\int_{-1}^1{[{{{(tanx)}^{11}}+{{(cosx)}^{21}}}]dx=}$${∫}_{-1}^{1}(tanx)^{11}dx+{∫}_{-1}^{1}(cosx)^{21}dx$=0+$2{∫}_{0}^{1}(cosx)^{21}dx$=$2{∫}_{0}^{1}(cosx)^{21}dx$;
故选:C.

点评 本题考查了定积分的运算法则以及几何意义;数量掌握法则和几何意义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.
(1)求证:AM⊥平面EBC;
(2)求直线AB与平面EBC所成的角的大小;
(3)求二面角A-EB-C的大小.
(4)你认为求二面角常用的方法有哪些?请按应用的重要程度写出3种,并就其中一种方法谈谈它的应用条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x<0}\\{5x,0≤x<1}\\{x+7,x≥1}\end{array}\right.$,画出求函数值的算法框图,并写出相应的算法语句.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线y=$\frac{1}{2}$x与椭圆E:x2+2y2=λ(λ>0)交于A,B两点,C,D是椭圆E上异于A,B的两点且直线AC,BD交于M,AD,BC交于点N,试求直线MN的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$\overrightarrow{OC}在∠AOB$的平分线上,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,且$\overrightarrow{OC}=x\overrightarrow a+y\overrightarrow b$,则(  )
A.x=yB.x+y=1C.$|{\overrightarrow b}|y=|{\overrightarrow a}|x$D.$|{\overrightarrow a}|y=|{\overrightarrow b}|x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.凸n多边形有f(n)条对角线,则凸n+1边形的对角线的条数f(n+1)与f(n)的递推关系式为f(n+1)=f(n)+n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在同一直角坐标系中,圆锥曲线C通过伸缩变换φ:$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$变成曲线x2+y2=1,则曲线C的离心率为(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:?x∈R,x2+1≥a都成立;命题q:方程(ρcosα)2-(ρsina)2=a+2表示焦点在x轴上的双曲线.
(Ⅰ)若命题p为真命题,求实数a的取值范围;
(Ⅱ)若“p且q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,已知三边a,b,c满足b2+a2-c2=$\sqrt{3}$ab,则∠C=$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案