精英家教网 > 高中数学 > 题目详情

设函数,且的图象的一个对称中心到最近的对称轴的距离为,(1)求的值;(2)求在区间上的最大值和最小值.

(1)1;(2)

解析试题分析:(1)本小题中的函数是常考的一种形式,先用降幂公式把化为一次形式,但角变为,再运用辅助角公式化为形式,又由对称中心到最近的对称轴距离为,可知此函数的周期为,从而利用周期公式易求出;(2)本小题在前小题的函数的基础上进行完成,因此用换元法只需令,利用求出u的范围,结合正弦函数图像即可找到函数的最值.
试题解析:(1).因为图象的一个对称中心到最近的对称轴距离为,又,所以,因此.
(2)由(1)知.当时,所以,因此.故在区间上的最大值和最小值分别为
考点:降幂公式,辅助角公式,周期公式,换元法,正弦函数图像,化归思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

化简

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

保持正弦曲线上所有点的纵坐标不变,横坐标缩短为原来的,再将图像沿 轴向右平移 个单位,得到函数 的图像.
(1)写出的表达式,并计算.
(2)求出 上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数图象的一条对称轴是直线.
(1)求;      
(2)求函数的单调增区间;
(3)画出函数在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的值域和函数的单调递增区间;
(2)当,且时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图象如下图,其中的角所对的边.
(1)求的解析式;
(2)若中角所对的边,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.⑴试确定A,的值;⑵现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数.
(1)求的值;
(2)求函数的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

的大小顺序是                  

查看答案和解析>>

同步练习册答案