精英家教网 > 高中数学 > 题目详情
19.用4种不同的颜色涂下列区域,要求每个区域只能用一种颜色,且相邻的区域不能同色,那么不同的涂法种数为(  )
A.84B.72C.60D.120

分析 ①若AD区域涂不同的颜色,②若AD号区域涂相同的颜色,两种情况讨论其他区域的涂色方案,由分类计数原理可得.

解答 解:①若AD区域涂不同的颜色,A有4种,D有3种,B有2种,C有2种,共有4×3×2×2=48种,
②若AD区域涂相同的颜色,A有4种,B有3种,C有3种,共有4×3×3=36种,
故有48+36=84,
故选:A.

点评 本题考查分步计数原理与分类计数原理的综合运用,注意4个区域的位置关系即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.P为抛物线y2=4x上任意一点,P在y轴上的射影为Q,点M(7,8),则|PM|与|PQ|长度之和的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,点F1,F2分别是椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点A是下顶点,抛物线C2:y=x2-1与x轴交于点F1,F2,与y轴交于点B,且点B是线段OA的中点,点N为抛物线上C2的一动点,过点N作抛物线C2的切线交椭圆C1于P,Q两点.
(1)求椭圆C1的方程;
(2)若点M(0,-$\frac{4}{5}$),求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如表:
未发病发病合计
未注射疫苗20xA
注射疫苗30yB
合计5050100
现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为$\frac{2}{5}$.
(1)求2×2列联表中的数据x,y,A,B的值;
(2)绘制发病率的条形统计图,并判 断疫苗是否有效?
(3)能够有多大把握认为疫苗有效?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P( K2≤K00.050.010.0050.001
K03.8416.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求满足以C(2,-1)为圆心且与直线3x-4y-5=0相切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在平面直角坐标系xOy中,直线l与椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)相切于点P,过椭圆的左、右焦点F1,F2分别作F1M,F2N重直于直线l于M,N,记μ=$\frac{{N{F_2}}}{{M{F_1}}}$,当P为左顶点时,μ=9,且当μ=1时,四边形MF1F2N的周长为22.
(1)求椭圆的标准方程;
(2)求证:MF1•NF2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,过右焦点F且垂直于x轴的直线与椭圆C相交于M,N两点,且|MN|=3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l经过点F且斜率为k,l与椭圆C相交于A,B两点,与以椭圆C的右顶点E为圆心的圆相交于P,Q两点(A,P,B,Q自下至上排列),O为坐标原点.若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{9}{5}$,且|AP|=|BQ|,求直线l和圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知方程$\frac{{x}^{2}}{5-2m}$+$\frac{{y}^{2}}{m+1}$=1表示椭圆,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某海滨游乐场出租快艇的收费办法如下:不超过十分钟收费80元;超过十分钟,超过部分按每分钟10元收费(对于其中不足一分钟的部分,若小于0.5分钟则不收费,若大于或等于0.5分钟则按一分钟收费),小茗同学为该游乐场设计了一款收费软件,程序框图如图所示,其中x(分钟)为航行时间,y(元)为所收费用,用[x]表示不大于x的最大整数,则图中①处应填(  )
A.y=10[x]B.y=10[x]-20C.y=10[x-$\frac{1}{2}$]-20D.y=10[x+$\frac{1}{2}$]-20

查看答案和解析>>

同步练习册答案