精英家教网 > 高中数学 > 题目详情
14.求满足以C(2,-1)为圆心且与直线3x-4y-5=0相切圆的方程.

分析 求出圆的半径,写出圆的方程即可.

解答 解:圆心为(2,-1),且圆心到直线3x-4y-5=0的距离为:
d=$\frac{|3×2-4×(-1)-5|}{\sqrt{{3}^{2}{+(-4)}^{2}}}$=1,
所以圆的半径为r=d=1,
圆的方程为:(x-2)2+(y+1)2=1.

点评 本题考查了点到直线的距离以及圆的方程的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求值:$C_n^{5-n}+C_{n+1}^{10-n}$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(理科)已知函数f(x)=-6ln(ax+2)+$\frac{1}{2}$x2在x=2处有极值.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线y=kx与函数f′(x)有交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),离心率e=$\frac{\sqrt{3}}{2}$,过焦点且与长轴垂直的直线被椭圆所截得线段长为1.
(1)求椭圆C方程;
(2)D,E,F为曲线C上的三个动点,D在第一象限,E,F关于原点对称,且|DE|=|DF|,问△DEF的面积是否存在最小值?若存在,求出此时D点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,给出下列5个命题:
①若A<B,则sinA<sinB;
②sinA<sinB,则A<B;
③若A>B,则$\frac{1}{tan2A}$>$\frac{1}{tan2B}$;
④若A<B,则cos2A>cos2B;
⑤若A<B,则tan$\frac{A}{2}$<tan$\frac{B}{2}$;
其中正确命题的序号是①②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用4种不同的颜色涂下列区域,要求每个区域只能用一种颜色,且相邻的区域不能同色,那么不同的涂法种数为(  )
A.84B.72C.60D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1(-1,0),F2(1,0),已知(1,e)在椭圆上,其中e为椭圆的离心率.
(I) 求椭圆的方程;
(Ⅱ)设A,B是椭圆上位于x轴上方的两点,直线AF2与直线BF1交于点P,|PA|:|PF2|=|PF1|:|PB|=3:1,求直线AF1的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinθ+cosθ=$\frac{1}{5}$,且$\frac{π}{2}$<θ<$\frac{3π}{4}$,则cos2θ的值是-$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.书架上有3本科技书和5本文艺书,要求科技书不能放在一起,一共有14400种不同的方法.

查看答案和解析>>

同步练习册答案