精英家教网 > 高中数学 > 题目详情
如图,已知P是圆O外一点,PA为圆O的切线,A为切点.割线PBC经过圆心O,若PA=3
3
,PC=9,则∠ACP=
 
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:利用切割线定理计算出PB,从而可得OA=3,OP=6,∠AOP=60°,即可求出∠ACP.
解答: 解:∵PA为圆O的切线,A为切点,割线PBC经过圆心O,
∴PA2=PB•PC,
∵PA=3
3
,PC=9,
∴27=9PB,
∴PB=3,
∴BC=6,
∴OA=3,OP=6,
∴∠AOP=60°,
∴∠ACP=30°,
故答案为:30°.
点评:本题考查切割线定理,考查特殊角的三角函数,求出OA=3,OP=6是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的S值为-4时,则输入的S0的值为(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC,三个内角A、B、C所对的边分别为a、b、c,若内角A、B、C依次成等差数列,且不等式-x2+6x-8>0的解集为{x|a<x<c},则b等于(  )
A、
3
B、2
3
C、3
3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

随着我国新型城镇化建设的推进,城市人口有了很大发展,生活垃圾也急剧递增.据统计资料显示,到2013年末,某城市堆积的垃圾已达到50万吨,为减少垃圾对环境污染,实现无害化、减量化和再生资源化,该市对垃圾进行资源化和回收处理.
(1)假设2003年底该市堆积的垃圾为10万吨,从2003年底到2013年底这十年中,该市每年产生的新垃圾以10%的年平均增长率增长,试求2013年,该市产生的新垃圾约有多少吨?
(2)根据预测,从2014年起该市还将以每年3万吨的速度产生新的垃圾,同时政府规划每年处理上年堆积垃圾的20%,现用b1表示2014年底该市堆积的垃圾数量,b2表示2015年底该市堆积的垃圾数量,…,bn表示经过n年后该城市年底堆积的垃圾数量.
①求b1的值和bn的表达式;
②经过多少年后,该城市的垃圾数量可以控制在30万吨的范围内.(结果精确到0.1,参考数据:1.111=2.9,1.110=2.6,1.19=2.4,1.18=2.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,曲线C1的点均在圆C2:x2+(y-5)2=9外,且对C1上任意一点M,M到直线y=-2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程;
(Ⅱ)设P为直线y=-4上的一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D,证明:四点A,B,C,D的横坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若满足条件
x-y+2≥0
x+y-2≥0
kx-y-2k+1≥0
的点P(x,y)构成三角形区域,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ln(ex+a+1)
x
(a为常数,是x∈(-∞,0)∪(0,+∞)上的偶函数.
(Ⅰ)求实数a的值,
(Ⅱ)已知函数g(x)=
b
ln(ex+a+1)
-lnx,若g(x)≥5-3x恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
.且过点(3,-1).
(1)求椭圆C的方徎;
(2)若动点P在直线l:x=-2
2
上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差不为零,a1+a2+a5>13,且a1,a2,a5成等比数列,则a1的取值范围为
 

查看答案和解析>>

同步练习册答案