精英家教网 > 高中数学 > 题目详情
随着我国新型城镇化建设的推进,城市人口有了很大发展,生活垃圾也急剧递增.据统计资料显示,到2013年末,某城市堆积的垃圾已达到50万吨,为减少垃圾对环境污染,实现无害化、减量化和再生资源化,该市对垃圾进行资源化和回收处理.
(1)假设2003年底该市堆积的垃圾为10万吨,从2003年底到2013年底这十年中,该市每年产生的新垃圾以10%的年平均增长率增长,试求2013年,该市产生的新垃圾约有多少吨?
(2)根据预测,从2014年起该市还将以每年3万吨的速度产生新的垃圾,同时政府规划每年处理上年堆积垃圾的20%,现用b1表示2014年底该市堆积的垃圾数量,b2表示2015年底该市堆积的垃圾数量,…,bn表示经过n年后该城市年底堆积的垃圾数量.
①求b1的值和bn的表达式;
②经过多少年后,该城市的垃圾数量可以控制在30万吨的范围内.(结果精确到0.1,参考数据:1.111=2.9,1.110=2.6,1.19=2.4,1.18=2.1)
考点:函数模型的选择与应用
专题:应用题,等差数列与等比数列
分析:(1)设2004年该城市产生垃圾为x万吨,根据市每年产生的新垃圾以10%的年平均增长率增长,建立方程,利用等比数列的求和公式即可得到结果;
(2)①b1=50×0.8+3;bn=50×(
4
5
n+3×(
4
5
n-1+3×(
4
5
n-2+…+3×
4
5
+3;②解不等式15+35×(
4
5
)n≤30
,可得(
4
5
)n
3
7
,即可得出结论.
解答: 解:(1)设2004年该城市产生垃圾为x万吨,依题意得:10+x+1.1x+1.12x+…+1.19x=50,…(2分)
所以
1-1.110
1-1.1
x=40
,所以x=
0.1
1.110-1
×40=2.5
(万吨)…(4分)
所以2013年该城市产生的新垃圾为2.5×1.19=7(万吨);…(5分)
(2)①b1=50×0.8+3=43(万吨);…(6分)
b1=50×0.8+3=50×
4
5
+3=43
b2=
4
5
b1+3=50×(
4
5
)2+3×
4
5
+3
bn=
4
5
bn-1+3=(
4
5
)2bn-2+3×(
4
5
)+3
…(7分)
所以bn=50×(
4
5
)n+3×(
4
5
)n-1+3×(
4
5
)n-2+…+3×
4
5
+3=50×(
4
5
)n+3×
1-(
4
5
)
n
1-
4
5

=50×(
4
5
)n+15(1-(
4
5
)n)=15+35×(
4
5
)n
…(9分)
②由题意,15+35×(
4
5
)n≤30
,∴(
4
5
)n
3
7
,…(10分)
(
4
5
)3-
3
7
>0,(
4
5
)4-
3
7
<0
f(n)=(
4
5
)n
是n的减函数,…(12分)
∴n≥4时,该城市垃圾堆积量会少于30万吨,
∴4年后该城市垃圾量可以控制在30万吨内.…(13分)
点评:函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“a>2”是“函数f(x)=loga(2-ax)在定义域内为减函数”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

如果复数
2-bi
i3
(其中b∈R)的实部与虚部互为相反数,则b=(  )
A、2B、-2C、-1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过点(
1
3
3
3
),则f(4)的值为(  )
A、-2
B、2
C、-
1
4
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数a,b,c均为正实数.
(Ⅰ)证明:a3+b3≥a2b+ab2
(Ⅱ)当a+b+c=1时,证明:(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知P是圆O外一点,PA为圆O的切线,A为切点.割线PBC经过圆心O,若PA=3
3
,PC=9,则∠ACP=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinxcosx+cos2x(x∈R).
(1)求f(x)的最小正周期和最大值;
(2)若f(
π
24
)=
2
sinA,其中A是面积为
3
3
2
的锐角△ABC的内角,且AB=2,求边AC和BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们把各位数字之和为7的四位数为“北斗数”(如2014是“北斗数”).则“北斗数”中千位为2的共有
 
个.

查看答案和解析>>

同步练习册答案