精英家教网 > 高中数学 > 题目详情
7.曲线y=xe2x-1在点(1,e)处的切线方程为y=3ex-2e.

分析 求得函数的导数,可得切线的斜率,运用点斜式方程可得切线的方程.

解答 解:y=xe2x-1的导数为y′=e2x-1+2xe2x-1
可得曲线y=xe2x-1在点(1,e)处的切线斜率为3e,
曲线y=xe2x-1在点(1,e)处的切线方程为y-e=3e(x-1),
即为y=3ex-2e.
故答案为:y=3ex-2e.

点评 本题考查导数的运用:求切线方程,考查导数的几何意义,正确求导和运用直线方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$),若$\overrightarrow{m}$•$\overrightarrow{n}$=1,求cos(x+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若方程2sin(x+$\frac{π}{6}$)-a=0在区间[0,π]存在两个不等实根,则a的取值范围是(  )
A.[1,2]B.[1,2)C.[-1,1]D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线($\sqrt{6}$sinθ)x+$\sqrt{3}$y-2=0的倾斜角为θ(θ≠0),则θ=$\frac{3π}{4}$(或135°).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x∈R|ax2+2x+1=0},其中a∈R.
(1)1是A中的一个元素,用列举法表示A;
(2)若A中有且仅有一个元素,求实数a的组成的集合B;
(3)若A中至多有一个元素,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若二次函数y=ax2+4x-2有两个不同的零点,则实数a的取值范围是a>-2且a≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)定义在R上的函数,且对任意m,n有f(m+n)=f(m)•f(n),且当 x>0时,0<f(x)<1.
(1)求证:f(0)=1,且当x>0时,有  f(x)>1;
(2)判断 f(x)在R上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.sinθ+cosθ=-$\frac{\sqrt{10}}{5}$,θ是第二象限的角,则tanθ(  )
A.-3B.-2C.-$\frac{1}{3}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.f(x)是定义在非零实数集上的函数,f′(x)为其导函数,且x>0时,xf′(x)-f(x)<0,记a=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,b=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,c=$\frac{f(0.{2}^{2})}{0.{2}^{2}}$,则(  )
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

同步练习册答案