| A. | -8 | B. | 2 | C. | 4 | D. | 8 |
分析 根据条件求出直线恒过定点C(1,3),根据面积相等得到直线过AB的中点,求出a的值,结合直线斜率的几何意义进行求解即可.
解答
解:由直线ax-y-a+3=0得a(x-1)+(3-y)=0,
即直线恒过C(1,3),x,y的不等式组$\left\{\begin{array}{l}{x-2y+5≥0}\\{x+y-1≥0}\\{x-y+1≤0}\end{array}\right.$表示的平面区域如图:由$\left\{\begin{array}{l}{x-2y+5=0}\\{x-y+1=0}\end{array}\right.$解得B(3,4),$\left\{\begin{array}{l}{x+y-1=0}\\{x-2y+5=0}\end{array}\right.$解得A(-1,2),可得C(1,3)是AB的中点,
若直线ax-y-a+3=0将区域分成面积相等的两部分,
直线只需经过顶点(0,1),(0,1)代入ax-y-a+3=0,解得a=2.
z=4x-ay=4x-2y,即y=2x-$\frac{z}{2}$,经过区域内的点B时,目标函数取得最大值.
此时最大值为:4×3-2×4=4.
故选:C.
点评 本题主要考查线性规划的应用,直线恒过定点以及三角形面积相等的应用,直线斜率的计算,综合性较强,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:解答题
| 组别 | 分组 | 频数 | 频率 |
| 第1组 | [50,60) | 8 | 0.16 |
| 第2组 | [60,70) | a | |
| 第3组 | [70,80) | 20 | 0.40 |
| 第4组 | [80,90) | | 0.08 |
| 第5组 | [90,100) | 2 | b |
| 合计 | | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 既不充分也不必要条件 | ||
| C. | 充分条件 | D. | 必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com