精英家教网 > 高中数学 > 题目详情
17.如图,在以A,B,C,D,E,F为顶点的多面体中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.
(Ⅰ)请在图中作出平面α,使得DE?α,且BF∥α,并说明理由;
(Ⅱ)求直线EF与平面BCE所成角的正弦值.

分析 (Ⅰ)取BC的中点G,连接EG,DG,证明平面ABF∥平面EDG,可得结论;
(Ⅱ)建立如图所示的坐标系,求出平面BCE的法向量,利用向量方法求直线EF与平面BCE所成角的正弦值.

解答 解:(Ⅰ)取BC的中点G,连接EG,DG,则平面EDG为所求.
∵AD=2,BG=2,AD∥BC,
∴四边形ADGB是平行四边形,
∴AB∥DG,
∵AB?平面EDG,DG?平面EDG,
∴AB∥平面EDG.
同理AF∥平面EDG,
∵AB∩AF=A,
∴平面ABF∥平面EDG,
∵FB?平面ABF,
∴BF∥平面EDG;
(Ⅱ)以点A为坐标原点,AD为y轴,AF为z轴,过A垂直于AD的直线为x轴,建立如图所示的坐标系,则F(0,0,4),E(0,2,1),B($\sqrt{3}$,-1,0),C($\sqrt{3}$,3,0),
∴$\overrightarrow{EF}$=(0,-2,3),$\overrightarrow{BC}$=(0,4,0),$\overrightarrow{BE}$=(-$\sqrt{3}$,3,1),
设平面BCE的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{4y=0}\\{-\sqrt{3}x+3y+z=0}\end{array}\right.$,
取$\overrightarrow{n}$=($\sqrt{3}$,0,3),则直线EF与平面BCE所成角的正弦值=$\frac{9}{\sqrt{4+9}•\sqrt{3+9}}$=$\frac{3\sqrt{39}}{26}$.

点评 本题考查直线与平面是否平行的判断与证明,考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.直线ax-y-a+3=0将x,y满足的不等式组$\left\{\begin{array}{l}{x-2y+5≥0}\\{x+y-1≥0}\\{x-y+1≤0}\end{array}\right.$表示的平面区域分成面积相等的两部分,则z=4x-ay的最大值是(  )
A.-8B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x、y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-a≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=$\frac{y+1}{x+1}$的最小值为-$\frac{1}{4}$,则正数a的值为(  )
A.$\frac{7}{6}$B.1C.$\frac{3}{4}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD且BC=4,点M为PC中点.
(1)求证:DM⊥平面PBC;
(2)若点E为BC边上的动点,且$\frac{BE}{EC}=λ$,是否存在实数λ,使得二面角P-DE-B的余弦值为$\frac{2}{3}$?若存在,求出实数λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点P,若|PF|=5,则点F到双曲线的渐近线的距离为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某厂在生产某产品的过程中,采集并记录了产量x(吨)与生产能耗y(吨)的下列对应数据:
x2468
y3467
根据上表数据,用最小二乘法求得回归直线方程$\widehat{y}$=$\widehat{b}$x+1.5,那么,据此回归模型,可预测当产量为5吨时生产能耗为(  )
A.4.625吨B.4.9375吨C.5吨D.5.25吨

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过点P(-3,1),Q(a,0)的光线经x轴反射后与圆x2+y2=1相切,则a的值为-$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}的前n项和为Sn,若a1=2,a8+a10=28,则S9=(  )
A.36B.72C.144D.288

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\frac{2x}{x-1}≥a$在区间[3,5]上恒成立,则实数a的最大值是(  )
A.3B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案