精英家教网 > 高中数学 > 题目详情
函数f(x)= 的单调递减区间是            
(0,1),(1,e)
解:因为x>0,那么求解导数f’(x)=,可知当x=e,f’(x)=0,那么利用导数的符号与函数单调性的关系可知,函数的递减区间为(0,1),(1,e)。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数在点的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设,求证:上恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象在点处的切线方程为
(Ⅰ)求函数的解析式;
(Ⅱ)若关于x的方程在区间上恰有两个相异实根,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知函数,其中a为实数。
(1)求函数的单调区间;
(2)若函数对定义域内的任意x恒成立,求实数a的取值范围。
(3)证明,对于任意的正整数mn,不等式恒成立。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(x2­­+bx+c)ex,其中b,cR为常数. 
(Ⅰ)若b2>4(c-1),讨论函数f(x)的单调性;
(Ⅱ)若b2≤4(c-1),且=4,试证:-6≤b≤2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于R上可导的函数,若满足,则必有(   )
A.    
C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是函数的导函数,且的图像如图所示,

函数的图像可能是 (   )


 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数是定义在R上的函数,其中的导函数为,满足
对于恒成立,则(    )
  
  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.函数f(x)=x3+ax+1在(-,-1)上为增函数,在(-1,1)上为减函数,则f(1)为(   )
A.B.1C.D.-1

查看答案和解析>>

同步练习册答案