精英家教网 > 高中数学 > 题目详情
已知点A(1,0),直线l:y=2x,O是坐标原点,R是直线l上的一点,若
RA
=2
AP
,则|
OP
|
的最小值是(  )
A、3?
B、
3
C、
3
5
D、
3
5
5
分析:由于R是直线l:y=2x上的一点,故可将R的坐标先假设出来,进一步给出满足条件的P点的坐标,再代入向量模的计算公式进行计算,再根据计算结果判断|
OP
|
的最小值.
解答:解:由于R是直线l:y=2x上的一点,故可设R的坐标为(x,2x)
RA
=(1-x,-2x)
又∵
RA
=2
AP

AP
=(
1-x
2
,-x),则
OP
=(
3-x
2
,-x),
|
OP
|
=
(
3-x
2
)
2
+(-x)2
=
5
4
x2-
3
2
x+
9
4

故当x=
3
5
时,|
OP
|
有最小值
3
5
5

故选D
点评:求向量的模的最值时,如果向量的坐标未知,可先将向量的坐标设出来,再根据其它已知条件,构造方程(组),解方程(组)后,求出向量的坐标,然后再代入向量模的运算公式,即可求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中an、bn分别为等差数列和等比数列,若P1是线段AB的中点,设等差数列公差为d,等比数列公比为q,当d与q满足条件
 
时,点P1,P2,P3,…,Pn,…共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),M是平面上的一动点,过M作直线l:x=4的垂线,垂足为N,且|MN|=2|MB|.
(1)求M点的轨迹C的方程;
(2)当M点在C上移动时,|MN|能否成为|MA|与|MB|的等比中项?若能求出M点的坐标,若不能说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A到图形C上每一个点的距离的最小值称为点A到图形C的距离.已知点A(1,0),圆C:x2+2x+y2=0,那么平面内到圆C的距离与到点A的距离之差为1的点的轨迹是(  )

查看答案和解析>>

同步练习册答案