精英家教网 > 高中数学 > 题目详情

【题目】在海岛上有一座海拔的山峰,山顶设有一个观察站,有一艘轮船按一固定方向做匀速直线航行,上午时,测得此船在岛北偏东、俯角为处,到时,又测得该船在岛北偏西、俯角为的处.

1)求船的航行速度;

2)求船从行驶过程中与观察站的最短距离.

【答案】(1);(2

【解析】试题分析:(1)由题意设船速为,则,在三角形 ,利用余弦定理及位移与速度的关系即可;(2)由题意及图形利用物理知识及余弦定理,作于点,当船行驶到点时, 最小,从而最小;求得最小距离.

试题解析:(1)设船速为,则中, 与俯角相等为 同理, 中, 中, 由余弦定理得.船的航行速度为.

2)作于点当船行驶到点时, 最小,从而最小此时, 船在行驶过程中与观察站的最短距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,前n项和为Sn , a2+a3=5,且Sn= an+ ,则S10=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin2x的图象向左平移 个单位,再向上平移1个单位,所得图象的函数解析式是(
A.y=2cos2x
B.y=2sin2x
C.
D.y=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcosx+2 cos2x﹣
(1)求函数f(x)的最小正周期和单调减区间;
(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足f( )= ,且sinB+sinC= ,求bc的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求:

(1)第1次取到黑球的概率;

(2)第1次和第2次都取到黑球的概率;

(3)在第1次取到黑球的条件下,第2次又取到黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

(I)求的解析式及单调递减区间;

(II)若存在 ,使函数成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且SnS4.

(1)求{an}的通项公式;

(2)设bn,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(sinx,sin(x﹣ )), =(sinx,cos(x+ )),f(x)=
(1)求f(x)的解析式及周期;
(2)求f(x)在x∈[﹣ ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:“x{x|1x1},都有不等式x2xm0成立”是真命题.

(1)求实数m的取值集合B

(2)设不等式(x3a)(xa2)0的解集为A,若xAxB的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案