精英家教网 > 高中数学 > 题目详情

【题目】已知直线l的方程为x3y+30

(Ⅰ)若直线l1ly轴上的截距相等,且l1的倾斜角是l的倾斜角的两倍,求直线l1的一般式方程;

(Ⅱ)若直线l2过点(2),且l2l垂直求直线l2的斜截式方程.

【答案】(Ⅰ);(Ⅱ)yx+5

【解析】

(Ⅰ)计算l截距为1,倾斜角为θ,得到l1的截距和倾斜角得到答案.

(Ⅱ)设与直线l垂直的直线方程为:3xy+m0,代入点坐标,计算得到答案.

(Ⅰ)直线l的方程为x3y+30.令x0,解得y1,在y轴上的截距为1

l的倾斜角为θ,则tanθθ[0π)∴θ

l1的倾斜角是l的倾斜角的两倍,∴l1的倾斜角=.∴tan

∴直线l1的方程为:yx+1

(Ⅱ)设与直线l垂直的直线方程为:3xy+m0

把点(2)代入可得:32m0.解得m=﹣5

∴直线l2过点(2),且l2l垂直的直线方程为:3xy50

化为:x+y50,其斜截式方程为:yx+5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如下图所示的频率分布直方图.

(I)写出a的值;

(II)试估计该校所有学生中,阅读时间不小于30个小时的学生人数;

(III)从阅读时间不足10个小时的样本学生中随机抽取3人,并用X表示其中初中生的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量单位:万元)和收益单位:万元)的数据如下表

月份

广告投入量

收益

他们分别用两种模型①分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值

Ⅰ)根据残差图,比较模型①②的拟合效果,应选择哪个模型?并说明理由

Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除

ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程

ⅱ)若广告投入量时,该模型收益的预报值是多少

附:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解本届高二学生对文理科的选择与性别是否有关,现随机从高二的全体学生中抽取了若干名学生,据统计,男生35人,理科生40人,理科男生30人,文科女生15人。

(1)完成如下2×2列联表,判断是否有99.9%的把握认为本届高二学生“对文理科的选择与性别有关”?

男生

女生

合计

文科

理科

合计

(2)已采用分层抽样的方式从样本的所有女生中抽取了5人,现从这5人中随机抽取2人参加座谈会,求抽到的2人恰好一文一理的概率。

0.15

0.10

0.05

0.01

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(参考公式,其中为样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

时,恒成立,求a的取值范围;

是定义在上的函数,在内任取个数,设,令,如果存在一个常数,使得恒成立,则称函数在区间上的具有性质P.试判断函数在区间上是否具有性质P?若具有性质P,请求出M的最小值;若不具有性质P,请说明理由.注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为菱形,,点的中点.

(1)证明:

(2)若点为线段的中点,平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品销售价格和销售量与销售天数有关,第x的销售价格(元/百斤),第x的销售量(百斤)(a为常数),且第7天销售该商品的销售收入为2009元.

1)求第10天销售该商品的销售收入是多少?

2)这20天中,哪一天的销售收入最大?为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处有极大值,则常数为( )

A. 2或6 B. 2 C. 6 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若对于恒成立,求实数的取值范围

(2)若对于恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案