精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和是Sn,且Sn=-n2+3n,则an=-2n+4.

分析 利用递推关系即可得出.

解答 解:∵Sn=-n2+3n,
∴当n=1时,a1=2;
当n≥2时,an=Sn-Sn-1=-n2+3n-[-(n-1)2+3(n-1)]=-2n+4,
当n=1时上式也成立,
则an=-2n+4.
故答案为:-2n+4.

点评 本题考查了递推关系、数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.点M(x,y)(x≥0)与点F(1,0)的距离比到y轴的距离大1.
(1)求点M的轨迹C方程;
(2)过曲线C上的点P(x0,2)作两条弦PA,PB交抛物线于A、B两点,若PA、PB所在直线的斜率之和为零,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{{\sqrt{6}}}{2}$,点(4,2)在C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)直线l不过原点O且不平行于坐标轴,且直线l与双曲线C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线l:x+$\sqrt{3}y-2=0$交圆x2+y2=2于A、B两点,则|AB|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC=AB=2,设S,A,B,C四点均在以O为球心的某个球面上,则O到平面ABC的距离为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,是偶函数的是(  )
A.f(x)=xB.f(x)=|x|C.f(x)=x3D.f(x)=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,已知PA垂直于⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过点A作AE⊥PC于点E,求证:AE⊥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=$\sqrt{4-3x-{x^2}}$的单调递增区间是(  )
A.$({-∞,-\frac{3}{2}}]$B.$[{-\frac{3}{2},+∞})$C.$[{-4,-\frac{3}{2}}]$D.$[{-\frac{3}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C1;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与椭圆C2:$\frac{{x}^{2}}{4}$+y2=1有相同的离心率,经过椭圆C2的左顶点作直线l,与椭圆C2相交于P、Q两点,与椭圆C1相交于A、B两点.
(1)若直线y=-x经过线段PQ的中点M,求直线l的方程:
(2)若存在直线l,使得$\overrightarrow{PQ}$=$\frac{1}{3}$$\overrightarrow{AB}$,求b的取值范围.

查看答案和解析>>

同步练习册答案