精英家教网 > 高中数学 > 题目详情
已知函数f(x)的图象与函数g(x)=2x关于直线y=x对称,令h(x)=f(1-|x|),则关于函数h(x)有以下命题:
(1)h(x)的图象关于原点(0,0)对称;   
(2)h(x)的图象关于y轴对称;
(3)h(x)的最小值为0;               
(4)h(x)在区间(-1,0)上单调递增.
中正确的是
②④
②④
分析:由条件可得f(x)与函数g(x)=2x 互为反函数,故f(x)=log2x,可得h(x)=f(1-|x|)的解析式,由此可得它的图象的对称性、函数的单调性以及最值,从而得出结论.
解答:解:由于函数f(x)的图象与函数g(x)=2x关于直线y=x对称,故函数f(x)与函数g(x)=2x 互为反函数.
故函数f(x)=log2x.
∴h(x)=f(1-|x|)=log2(1-|x|),故函数h(x)是偶函数,图象关于y对称,故(2)正确而(1)不正确.
函数h(x)的定义域为(-1,1),在(-1,0)上是增函数,在(0,1)上是减函数,故(4)正确.
故当x=0时,函数h(x)取得最大值为 0,故(3)不正确.
故答案为 ②④.
点评:本题主要考查反函数的定义和图象性质,函数的单调性、奇偶性的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象有且仅有由五个点构成,它们分别为(1,2),(2,3),(3,3),(4,2),(5,2),则f(f(f(5)))=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足a1=λ-2,2an+1=
2n,n为奇数
f(an),n为偶数

(I)求f(n)(n∈N*)的表达式;
(II)设λ=3,求a1+a2+a3+…+a2n
(III)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于原点对称,且当x<0时,f(x)=2x-4,那么当x>0时,f(x)=
2x+4
2x+4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•焦作一模)已知函数f(x)的图象过点(
π
4
,-
1
2
),它的导函数f′(x)=Acos(ωx+φ)(x∈R)的图象的一部分如图所示,其中A>0,ω>0,|φ|<
π
2
,为了得到函
数f(x)的图象,只要将函数y=sinx(x∈R)的图象上所有的点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于直线x=2对称,且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4,则下列表示大小关系的式子正确的是(  )
A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步练习册答案