精英家教网 > 高中数学 > 题目详情
8.圆(x-1)2+(y-2)2=1上的点到直线l:4x-3y+8=0的距离的最小值和最大值分别是(  )
A.$\frac{2}{5},\frac{12}{5}$B.$\frac{1}{5},\frac{11}{5}$C.$\frac{3}{5},\frac{13}{5}$D.1,3

分析 求出圆心和半径.再求出圆心到直线的距离,把此距离加上或减去半径,即为所求.

解答 解:∵圆的方程为(x-1)2+(y-2)2=1.
∴圆心C(1,2),半径r=1.
∴圆心C(1,2)到直线4x-3y+8=0的距离为d=$\frac{|4×1-3×2+8|}{\sqrt{{4}^{2}+(-3)^{2}}}$=$\frac{6}{5}$,
圆(x-1)2+(y-2)2=1上的点到直线l:4x-3y+8=0的距离的最小值是:$\frac{6}{5}$-1=$\frac{1}{5}$
圆(x-1)2+(y-2)2=1上的点到直线l:4x-3y+8=0的距离的最大值:1+$\frac{6}{5}$=$\frac{11}{5}$.
故选:B.

点评 本题考查直线和圆的位置关系,点到直线的距离公式等知识的综合应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.甲、乙两人玩剪刀、锤子、布的游戏,则玩一局甲不输的概率是$\frac{2}{3}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如表提供了一种二进制与十六进制之间的转换方法,这也是实际使用的方法之一,利用这个对照表,十六进制与二进制之间就可以实现逐段转换了.求十六进制的C7A16转化为二进制数的算法.
二进制0000001001000110100010101100111
十六进制01234567
二进制10001001101010111100110111101111
十六进制89ABCDEF

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若不等式|8x+9|<7和不等式ax2+bx>2的解集相等,则实数a,b的值分别为(  )
A.a=-8,b=-10B.a=-4,b=-9C.a=-1,b=9D.a=-1,b=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设直线过点[2,5],且横截距与纵截距相等,则直线方程为5x-2y=0或x+y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点M,N是抛物线y=4x2上不同的两点,F为抛物线的焦点,且满足∠MFN=135°,弦MN的中点P到直线l:y=-$\frac{1}{16}$的距离记为d,|MN|2=λ•d2,则λ的最小值为2+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{ax}{{1+{x^2}}}+1$(a≠0).
(1)已知函数f(x)在点(0,1)处的斜率为1,求a的值;
(2)求函数f(x)的单调区间;
(3)若a>0,g(x)=x2emx,且对任意的x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1
(1)若$\overrightarrow{a}•\overrightarrow{b}$=1,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.
(2)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ为45°,求|$\overrightarrow{a}$-$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.运行如图所示的程序框图,若输出的k的值为13,则判断框中可以填(  )
A.m>7?B.m≥7?C.m>8?D.m>9?

查看答案和解析>>

同步练习册答案