精英家教网 > 高中数学 > 题目详情
4.等边△ABC的边长为2,且$3\overrightarrow{AE}=2\overrightarrow{AC},2\overrightarrow{BD}=\overrightarrow{BC}$,则$\overrightarrow{BE}•\overrightarrow{AD}$=-1.

分析 根据平面向量数量积的定义进行转化求解即可.

解答 解:$3\overrightarrow{AE}=2\overrightarrow{AC},2\overrightarrow{BD}=\overrightarrow{BC}$,
∴$\overrightarrow{AE}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$,即D是BC的中点,
则$\overrightarrow{BE}•\overrightarrow{AD}$=($\overrightarrow{BA}$+$\overrightarrow{AE}$)•$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=(-$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$)•$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)
=$\frac{1}{2}$[-$\overrightarrow{AB}$2+$\frac{2}{3}$$\overrightarrow{AC}$2+$\frac{2}{3}$$\overrightarrow{AC}$•$\overrightarrow{AB}$-$\overrightarrow{AB}$•$\overrightarrow{AC}$]
=$\frac{1}{2}$[-4+$\frac{2}{3}$×22+$\frac{2}{3}$×2×2cos60°-2×2×cos60°]
=$\frac{1}{2}$(-4+$\frac{8}{3}$+$\frac{4}{3}$-2)=$\frac{1}{2}$×(-6+4)=-1,
故答案为:,-1

点评 本题主要考查向量数量积的应用,根据向量共线的基本定义以及向量加法和加法的运算法则进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在正四面体A-BCD中,若AB=6,则这个正四面体外接球的表面积为(  )
A.27πB.36πC.54πD.63π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x||x-a|≤1},B={x|x2-5x+4≤0}.
(1)当a=1时,求A∪B;
(2)已知“x∈A”是“x∈B”的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=4,则△ABC的面积的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC中,角A、B、C所对的边分别是a、b、c,且c2-b2=ab,C=$\frac{π}{3}$,则$\frac{sinA}{sinB}$的值为(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的两焦点F1、F2与短轴两端点构成四边形为正方形,又点M是C上任意一点,且△MF1F2的周长为2$\sqrt{2}$+2.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆E上一点,且满足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$(O为坐标原点),当|AB|<$\frac{{2\sqrt{5}}}{3}$时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设已知各项均为正数的数列{an}前n项和为Sn,且Sn+Sn-1=tan2+2(n≥2,t>0),a1=1.求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若x∈(0,+∞),则(1+2x)15的二项展开式中系数最大的项为第11项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数$f(x)=\left\{\begin{array}{l}-x+1(x≤0)\\ lnx(x>0)\end{array}\right.$,则函数y=f[f(x)]+1的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案