精英家教网 > 高中数学 > 题目详情
有甲、乙两种商品,经销这两种商品所获的利润依次为p(万元)和q(万元),它们与投入的资金x(万元)的关系,据经验估计为:p=-x2+4x,q=2x今有3万元资金投入经销甲、乙两种商品,为了获得最大利润,应对甲、乙两种商品分别投入多少资金?总共获得的最大利润是多少万元?
考点:函数模型的选择与应用
专题:应用题,函数的性质及应用
分析:对甲乙分别投入x,3-x(万元),根据经验公式,可建立利润函数,利用换元法转化为二次函数,采用配方法可求函数的最值.
解答: 解:设投入甲商品x万元、投入乙商品3-x万元,共获得利润y万元(2分)  
则y=(-x2+4x)+2(3-x)=-x2+2x+6=-(x-1)2+7(12分)  
由于0≤x≤3,所以当x=1时,ymax=7(15分)
答:应投入甲商品1万元、投入乙商品2万元,共获得最大利润7万元.(16分)
点评:本题的考点是函数模型的选择与应用,主要考查利用函数模型解决实际问题,关键是利用经验公式建立利润函数关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C对边分别为a,b,c,且3b2+3c2-3a2=4
2
bc.
(1)求sinA的值;
(2)求
2sin(B+C)
1-cos2A
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程x2+ax+2b=0的两根分别在区间(0,1)与(1,2)内,求
b-2
a-1
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=k(x-1),双曲线:x2-y2=4,试讨论下列情况下实数k的取值范围:
(1)直线l与双曲线有两个公共点;
(2)直线l与双曲线有且只有一个公共点;
(3)直线l与双曲线没有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3,4),向量
b
=(7,-24).
①求与
a
同向的单位向量
e
的坐标;
②求
a
b
方向上的投影..

查看答案和解析>>

科目:高中数学 来源: 题型:

写出所有同时满足以下两个条件的非空集合M.
①M⊆{1,2,3,4,5};  
②若a∈M,则6-a∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(cos2x,sin2x),
b
=(sin
π
4
,cos
π
4
)函数f(x)=
a
b

(1)求f(x)解析式;
(2)求函数y=f(x)的单调递减区间;
(3)在给出的直角坐标系中用“五点作图法”画出函数y=f(x)在[0,π]上的图象.
(要求列表、描点、连线)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-x≤0,x∈R},设函数f(x)=2x2-2x+3,x∈A的值域为B,求集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(tanx)=cos2x,则f(-1)=
 

查看答案和解析>>

同步练习册答案