| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{10}}{3}$ | D. | $\sqrt{5}$+1 |
分析 求得双曲线的一条渐近线方程,运用点到直线的距离公式可得b=$\frac{1}{3}$a,由a,b,c的关系和离心率公式,计算即可得到所求值.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{b}{a}$x,
由题意可得$\frac{\sqrt{2}b}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{\sqrt{5}}{5}$,
化为b2=$\frac{1}{9}$a2,由c2=a2+b2,
可得c2=$\frac{10}{9}$a2,即c=$\frac{\sqrt{10}}{3}$a,
则离心率e=$\frac{c}{a}$=$\frac{\sqrt{10}}{3}$.
故选:C.
点评 本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查双曲线的渐近线方程及运用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{21}}{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | -$\frac{5}{9}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com