精英家教网 > 高中数学 > 题目详情

是定义在上的函数,当,且时,有
(1)证明是奇函数;
(2)当时,(a为实数). 则当时,求的解析式;
(3)在(2)的条件下,当时,试判断上的单调性,并证明你的结论.

(1)函数定义域对称
,函数是奇函数
(2)(3)上是增函数

解析试题分析:(1)函数定义域对称
,函数是奇函数
(2)

(3)恒成立,上是增函数,时,令上是增函数,综上当上是增函数
考点:求函数解析式及函数性质
点评:判断函数奇偶性需在定义域对称的条件下判断哪一个成立,判断函数单调性,只需判定导数大于零还是小于零

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题


设命题p:函数的定义域为R;命题q:不等式对任意恒成立.
(Ⅰ)如果p是真命题,求实数的取值范围;
(Ⅱ)如果命题“p或q”为真命题且“p且q”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在实数集上的函数,其导函数记为
(1)设函数,求的极大值与极小值;
(2)试求关于的方程在区间上的实数根的个数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知指数函数满足:g(2)=4,定义域为的函数
是奇函数。
(1)确定的解析式;(2)求mn的值;
(3)若对任意的,不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,是自然对数的底数)是实数集上的奇函数.
(1)求的值;
(2)试讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数,若不等式的解集为.(Ⅰ)求的值;(Ⅱ)若函数上的最小值为1,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数

(1)在如图给定的直角坐标系内画出的图象;
(2)写出的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
⑴写出该函数的单调区间;
⑵若函数恰有3个不同零点,求实数的取值范围;
⑶若对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知函数,且任意的

(1)求的值;
(2)试猜想的解析式,并用数学归纳法给出证明.

查看答案和解析>>

同步练习册答案