精英家教网 > 高中数学 > 题目详情

已知指数函数满足:g(2)=4,定义域为的函数
是奇函数。
(1)确定的解析式;(2)求mn的值;
(3)若对任意的,不等式恒成立,求实数的取值范围

(1)m=2,n=1(2)

解析试题分析:解:(1)    2分
(2)由(1)知:
因为是奇函数,所以=0,即
, 又由f(1)= -f(-1)知
    3分
(3)由(2)知
易知上为减函数。
又因是奇函数,从而不等式:  
等价于
为减函数,由上式推得:
即对一切有:
从而判别式  5分
考点:函数奇偶性和单调性的运用
点评:主要是考查了函数的奇偶性和单调性的性质的综合运用,结合概念来判定,并解不等式,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 
(I)当时,求在[1,]上的取值范围。
(II)若在[1,]上为增函数,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中,设
(1)求的定义域;
(2)判断的奇偶性,并说明理由;
(3)若,求使成立的的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)若f(x)=2,求x的值;
(2)判断x>0时,f(x)的单调性;
(3)若恒成立,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间
(2)函数的图象在处切线的斜率为若函数在区间(1,3)上不是单调函数,求m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,函数的图象与轴相交于点,且该函数的最小正周期为

(1)、求的值;
(2)、已知点,点是该函数图象上一点,
的中点,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是定义在上的函数,当,且时,有
(1)证明是奇函数;
(2)当时,(a为实数). 则当时,求的解析式;
(3)在(2)的条件下,当时,试判断上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)求,并求数列的通项公式.   
(2)已知函数上为减函数,设数列的前的和为
求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最小正周期;
(2)若,且,求的值.

查看答案和解析>>

同步练习册答案